The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

نویسندگان

  • YANNICK PRIVAT
  • MARIO SIGALOTTI
چکیده

The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of exponential decay of a damped membrane and an approximate controllability result for the bilinear Schrödinger equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generic Property for the Eigenfunctions of the Laplacian

In this work we show that, generically in the set of C2 bounded regions of Rn, n ≥ 2, the inequality R Ω φ 3 6= 0 holds for any eigenfunction of the Laplacian with either Dirichlet or Neumann boundary conditions.

متن کامل

Positive solution for Dirichlet‎ ‎$‎‎p(t)‎$‎-Laplacian BVPs

In this paper we provide‎ ‎existence results for positive solution to‎ ‎Dirichlet p(t)-Laplacian boundary value problems‎. ‎The sublinear and‎ ‎superlinear cases are considerd‎.

متن کامل

L1-Estimates for Eigenfunctions of the Dirichlet Laplacian

For d ∈ N and Ω 6= ∅ an open set in R, we consider the eigenfunctions Φ of the Dirichlet Laplacian −∆Ω of Ω. If Φ is associated with an eigenvalue below the essential spectrum of −∆Ω we provide estimates for the L1-norm of Φ in terms of its L2-norm and spectral data. These L1estimates are then used in the comparison of the heat content of Ω at time t > 0 and the heat trace at times t′ > 0, wher...

متن کامل

MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lectures 14: Shape Recognition Using Laplacian Eigenvalues and Computational Methods of Laplacian Eigenvalues/Eigenfunctions

In this section, we will introduce the work of Kbabou, Hermi, and Rhonma (2007)[2]. Their main idea is to use the eigenvalues and their ratios of the Dirichlet-Laplacian for various planar shapes as their features for classifying them. Let the sequence 0 < λ 1 < λ 2 ≤ λ 3 ≤ · · · ≤ λ k ≤ · · · → ∞ be the sequence of eigenvalues of Dirichlet-Laplacian problem: −∆u = λu in a given bounded planar ...

متن کامل

Almost all eigenfunctions of a rational polygon are uniformly distributed

We consider an orthonormal basis of eigenfunctions of the Dirichlet Laplacian for a rational polygon. The modulus squared of the eigenfunctions defines a sequence of probability measures. We prove that this sequence contains a density-one subsequence that converges to Lebesgue measure. Mathematics Subject Classification (2010). Primary 35P20; Secondary 58J51, 81Q50.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008