Direct computation of scattering matrices for general quantum graphs

نویسنده

  • V. Caudrelier
چکیده

We present a direct and simple method for the computation of the total scattering matrix of an arbitrary finite noncompact connected quantum graph given its metric structure and local scattering data at each vertex. The method is inspired by the formalism of Reflection-Transmission algebras and quantum field theory on graphs though the results hold independently of this formalism. It yields a simple and direct algebraic derivation of the formula for the total scattering and has a number of advantages compared to existing recursive methods. The case of loops (or tadpoles) is easily incorporated in our method. This provides an extension of recent similar results obtained in a completely different way in the context of abstract graph theory. It also allows us to discuss briefly the inverse scattering problem in the presence of loops using an explicit example to show that the solution is not unique in general. On top of being conceptually very easy, the computational advantage of the method is illustrated on two examples of ”threedimensional” graphs (tetrahedron and cube) for which other methods are rather heavy or even impractical. July 2009 LAPTH-1347/09

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time

In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...

متن کامل

2 00 6 Quantum Computation with Scattering Matrices

We discuss possible applications of the 1-D direct and inverse scattering problem to design of universal quantum gates for quantum computation. The potentials generating some universal gates are described.

متن کامل

Quantum field theory on quantum graphs and application to their conductance

We construct a bosonic quantum field on a general quantum graph. Consistency of the construction leads to the calculation of the total scattering matrix of the graph. This matrix is equivalent to the one already proposed using generalized star product approach. We give several examples and show how they generalize some of the scattering matrices computed in the mathematical or condensed matter ...

متن کامل

A ug 2 00 7 Quantum graphs where back - scattering is prohibited

We describe a new class of scattering matrices for quantum graphs in which backscattering is prohibited. We discuss some properties of quantum graphs with these scattering matrices and explain the advantages and interest in their study. We also provide two methods to build the vertex scattering matrices needed for their construction.

متن کامل

Quantum graphs where back-scattering is prohibited

We describe a new class of scattering matrices for quantum graphs in which backscattering is prohibited. We discuss some properties of quantum graphs with these scattering matrices and explain the advantages and interest in their study. We also provide two methods to build the vertex scattering matrices needed for their construction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009