Importance sampling for Jackson networks

نویسندگان

  • Paul Dupuis
  • Hui Wang
چکیده

Rare event simulation in the context of queueing networks has been an active area of research for more than two decades. A commonly used technique to increase the efficiency of Monte Carlo simulation is importance sampling. However, there are few rigorous results on the design of efficient or asymptotically optimal importance sampling schemes for queueing networks. Using a recently developed game/subsolution approach, we construct simple and efficient state-dependent importance sampling schemes for simulating buffer overflows in stable open Jackson networks. The sampling distributions do not depend on the particular event of interest, and hence overflow probabilities for different events can be estimated simultaneously. A by-product of the analysis is the identification of the minimizing trajectory for the calculus of variation problem that is associated with the sample-path large deviation rate function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of heuristics for simulating population overflow in Jackson tandem queuing networks to non-Markovian tandem queuing networks

In this paper we extend previously proposed state-dependent importance sampling heuristics for simulation of population overflow in Markovian tandem queuing networks to nonMarkovian tandem networks, and experimentally demonstrate the asymptotic efficiency of the resulting heuristics.

متن کامل

Dynamic Importance Sampling for Queueing Networks

Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard approach, which simulates the system using an a priori fixed change of measure suggested by large deviation analysis, has been shown to fail in even ...

متن کامل

Asymptotically optimal importance sampling for Jackson networks with a tree topology

Importance sampling (IS) is a variance reduction method for simulating rare events. A recent paper by Dupuis, Wang and Sezer (Ann. App. Probab. 17(4):13061346, 2007) exploits connections between IS and subsolutions to a limit HJB equation and its boundary conditions to show how to design and analyze simple and efficient IS algorithms for various overflow events for tandem Jackson networks. The ...

متن کامل

Adaptive Importance Sampling Simulation of Queueing Networks

In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a function of the content of the buffers, and the change of measure is determined using a cross-entr...

متن کامل

A Balanced Likelihood Ratio Approach for Analyzing Rare Events in a Tandem Jackson Network

Balanced likelihood ratio importance sampling methods were originally developed for the analysis of fault-tolerant systems. This paper provides a basis for adapting this approach to analyze the rare event probability that total system size reaches a bound before returning to zero in tandem Jackson networks. An optimal importance sampling distribution for the single server case is derived throug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Queueing Syst.

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2009