From Spiking Neuron Models to Linear-Nonlinear Models

نویسندگان

  • Srdjan Ostojic
  • Nicolas Brunel
چکیده

Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From spiking neurons to rate models: a cascade model as an approximation to spiking neuron models with refractoriness.

A neuron that is stimulated repeatedly by the same time-dependent stimulus exhibits slightly different spike timing at each trial. We compared the exact solution of the time-dependent firing rate for a stochastically spiking neuron model with refractoriness (spike response model) with that of an inhomogeneous Poisson process subject to the same stimulus. To arrive at a mapping between the two m...

متن کامل

Stochastic partial differential equations in Neurobiology: linear and nonlinear models for spiking neurons

Stochastic differential equation (SDE) models of nerve cells for the most part neglect the spatial dimension. Including the latter leads to stochastic partial differential equations (SPDEs) which allow for the inclusion of important variations in the densities of ion channels. In the first part of this work, we briefly consider representations of neuronal anatomy in the context of linear SPDE m...

متن کامل

Optoelectronic Implementation of a FitzHugh-Nagumo Neural Model

An optoelectronic implementation of a spiking neuron model based on the FitzHugh-Nagumo equations is presented. A tunable semiconductor laser source and a spectral filter provide a nonlinear mapping from driver voltage to detected signal. Linear electronic feedback completes the implementation, which allows either electronic or optical input signals. Experimental results for a single system and...

متن کامل

Implementation of a Line Attractor - Based Model of the Gaze Holding Integrator Using Nonlinear Spiking Neuron Models

page 2 Implementation of a Line Attractor-Based Model of the Gaze Holding Integrator Using Nonlinear Spiking Neuron Models

متن کامل

Spiking AGREL

Spiking neural networks are characterised by the spiking neuron models they use and how these spiking neurons process information communicated through spikes – the neural code. We demonstrate a plausible spiking neural network based on Spike Response Models and predictive spike-coding. When combined with a plausible reinforcement learning strategy – Attention Gated REinforcement Learning (AGREL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011