Human Prostate Side Population Cells Demonstrate Stem Cell Properties in Recombination with Urogenital Sinus Mesenchyme
نویسندگان
چکیده
Stem cell enrichment provides a tool to examine prostate stem cells obtained from benign and malignant tissue. Functional assays can enrich stem cells based on common stem cell phenotypes, such as high ATP binding cassette (ABC) transporter mediated efflux of Hoechst substrates (side population assay). This functional assay is based upon mechanisms that protect cells from environmental insult thus contributing to the survival and protection of the stem cell population. We have isolated and analyzed cells digested from twelve clinical prostate specimens based on the side population assay. Prostate stem cell properties of the isolated cells were tested by serial recombination with rat urogenital mesenchyme. Recombinants with side population cells demonstrate an increase in the frequency of human ductal growth and the number of glands per recombinant when compared to recombinants with non-side population cells. Isolated cells were capable of prostatic growth for up to three generations in the recombination assay with as little as 125 sorted prostate cells. The ability to reproducibly use cells isolated by fluorescence activated cell sorting from human prostate tissue is an essential step to a better understanding of human prostate stem cell biology. ABC transporter G2 (ABCG2) was expressed in recombinants from side population cells indicating the side population cells have self-renewal properties. Epithelial cell differentiation of recombinants was determined by immunohistochemical analysis for expression of the basal, luminal, and neuroendocrine markers, p63, androgen receptor, prostate specific antigen, and chromogranin A, respectively. Thus, the ABCG2 expressing side population demonstrates multipotency and self-renewal properties indicating stem cells are within this population.
منابع مشابه
Formation of human prostate epithelium using tissue recombination of rodent urogenital sinus mesenchyme and human stem cells.
Progress in prostate cancer research is severely limited by the availability of human-derived and hormone-naïve model systems, which limit our ability to understand genetic and molecular events underlying prostate disease initiation. Toward developing better model systems for studying human prostate carcinogenesis, we and others have taken advantage of the unique pro-prostatic inductive potenti...
متن کاملIn vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme.
The existence of a postnatal prostate stem cell is supported by several types of evidence. Withdrawal of androgen leads to involution of the gland, but readdition can rapidly stimulate regeneration. Tissue fragments derived from mouse or rat prostatic epithelia from midgestation embryos or adult mice, when combined with tissue fragments from urogenital sinus mesenchyme and grafted under the kid...
متن کاملTranscription of prostatic steroid binding protein (PSBP) gene is induced by epithelial-mesenchymal interaction.
The prostate gland develops from the fetal urogenital sinus at the base of the urinary bladder. It finally differentiates into three lobes; ventral, lateral and dorsal lobes of the prostate. In spite of their common developmental origin and similar glandular structure, these lobes show the different biochemical characteristics, for example, in the proteins they secrete. In the present study, we...
متن کاملMolecular Signatures of the Primitive Prostate Stem Cell Niche Reveal Novel Mesenchymal-Epithelial Signaling Pathways
BACKGROUND Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate...
متن کاملDefined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin
Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin(-)SCA-1(+)CD49f(+)TROP2(high) phenotype. Progesterone and sodium selenite are ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013