Recent Results on Douglas-Rachford Methods for Combinatorial Optimization Problems

نویسندگان

  • Francisco J. Aragón Artacho
  • Jonathan M. Borwein
  • Matthew K. Tam
چکیده

We discuss recent positive experiences applying convex feasibility algorithms of Douglas–Rachford type to highly combinatorial and far from convex problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global behavior of the Douglas-Rachford method for a nonconvex feasibility problem

In recent times the Douglas–Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a p...

متن کامل

Recent Results on Douglas–rachford Methods

Recent positive experiences applying convex feasibility algorithms of Douglas–Rachford type to highly combinatorial and far from convex problems are described.

متن کامل

A Cyclic Douglas-Rachford Iteration Scheme

In this paper we present two Douglas–Rachford inspired iteration schemes which can be applied directly to N-set convex feasibility problems in Hilbert space. Our main results are weak convergence of the methods to a point whose nearest point projections onto each of the N sets coincide. For affine subspaces, convergence is in norm. Initial results from numerical experiments, comparing our metho...

متن کامل

Convex Multi-class Image Labeling by Simplex-Constrained Total Variation

Multi-class labeling is one of the core problems in image analysis. We show how this combinatorial problem can be approximately solved using tools from convex optimization. We suggest a novel functional based on a multidimensional total variation formulation, allowing for a broad range of data terms. Optimization is carried out in the operator splitting framework using Douglas-Rachford Splittin...

متن کامل

A New Use of Douglas-Rachford Splitting and ADMM for Identifying Infeasible, Unbounded, and Pathological Conic Programs

In this paper, we present a method for identifying infeasible, unbounded, and pathological conic programs based on Douglas-Rachford splitting, or equivalently ADMM. When an optimization program is infeasible, unbounded, or pathological, the iterates of Douglas-Rachford splitting diverge. Somewhat surprisingly, such divergent iterates still provide useful information, which our method uses for i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2014