Design and FPGA Implementation of CORDIC-based 8-point 1D DCT Processor
نویسندگان
چکیده
CORDIC or CO-ordinate Rotation DIgital Computer is a fast, simple, efficient and powerful algorithm used for diverse Digital Signal Processing applications. Primarily developed for real-time airborne computations, it uses a unique computing technique [7] which is especially suitable for solving the trigonometric relationships involved in plane co-ordinate rotation and conversion from rectangular to polar form. It comprises a special serial arithmetic unit having three shift registers, three adders/subtractors, Look-Up table and special interconnections. Using a prescribed sequence of conditional additions or subtractions the CORDIC arithmetic unit can be controlled to solve either of the following equations: Y’=K (Ycos λ+ Xsin λ) X’=K (Xcos λ Ysin λ); where K is a constant In this project: A CORDIC-based processor for sine/cosine calculation was designed using VHDL programming in Xilinx ISE 10.1. The CORDIC module was tested for its functionality and correctness by test-bench analysis. Subsequently, FPGA implementation of the CORDIC core followed by ChipScopePro analysis of the output logic waveforms was performed. Using this CORDIC core a DCT processor was designed to calculate the 8-point 1D DCT. The functionality and operational correctness of this processor was tested, first on the test-bench and then via ChipScopePro analysis, post FPGA implementation. The output obtained in both the cases was compared with the actual values to test for consistency and the percentage of accuracy was established. Power consumption and FPGA resource utilization were observed. The results obtained were discussed.
منابع مشابه
Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملFPGA implementation of short critical path CORDIC-based approximation of the eight-point DCT
This paper presents an efficient approach for multiplierless implementation for eight-point DCT approximation, which based on coordinate rotation digital computer (CORDIC) algorithm. The main design objective is to make critical path of corresponding circuits shorter and reduce the combinational delay of proposed scheme. 1. INTRODUCTION It is well know that the discrete cosine transform (DCT) h...
متن کاملDesign and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)
In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...
متن کاملAn efficient CORDIC array structure for the implementation of discrete cosine transform
We propose a novel implementation of the discrete cosine transform (DCT) and the inverse DCT (IDCT) algorithms using a CORDIC (Coordinate Rotation DIgital Computer)-based systolic processor array structure. First, we reformulate an :\--point DCT or IDCT aigorithm into a rotation formulation which makes it suitable for CORDIC processor implementation. We then propose to use a pipelined CORDIC pr...
متن کاملA High-Throughput and Memory-Efficiency 2-D DCT Architecture Based on CORDIC Rotation
2-D Discrete Cosine Transform (DCT) applies on image data compression and saves more memories. In this paper, we use fast DCT algorithm, and propose a parallel-pipelined architecture to implement a 8 8× DCT/IDCT processor. This architecture involves two 8-point DCT processors, dual-bank of SRAM (128 words) and the coefficient ROM, three multiplexers, timing controller and 7-bit counter. The ker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011