Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents.
نویسندگان
چکیده
Ion-trapping theory predicts that alkalinization of tumor extracellular pH will enhance the anti-tumor activity of weak-base chemotherapeutics. We have previously demonstrated that chronic and acute treatment of tumor-bearing mice with sodium bicarbonate results in tumor-specific alkalinization of extracellular pH. Furthermore, bicarbonate pretreatment enhances the anti-tumor activity of doxorubicin and mitoxantrone in two different mouse tumor models. Previous work has indicated subtle, yet significant differences between the pH sensitivities of the biodistribution and anti-tumor efficacies of doxorubicin and mitoxantrone in vitro. The present study demonstrates that systemic alkalinization selectively enhances tumor uptake of radiolabeled mitoxantrone, but not doxorubicin. Results using these two drugs are quantitatively and qualitatively very different, and can be explained on the basis of differences in the octanol-water partition coefficients of their charged forms. These results suggest that inducing metabolic alkalosis in patients would have a positive effect on response to mitoxantrone therapy. However, the therapeutic index would not increase if sodium bicarbonate also caused increased retention of mitoxantrone in susceptible normal tissues in the host. The major dose-limiting organ systems for mitoxantrone are heart, liver, bone marrow, spleen and blood cells. Bicarbonate was found to have no significant effect on the distribution of mitoxantrone to any of these tissues except for spleen. However, neither spleen weights nor lymphocyte counts were adversely affected by NaHCO(3) pretreatment, indicating that this co-therapy does not enhance myelosuppression due to mitoxantrone therapy. These findings suggest that metabolic alkalosis would produce a net gain in mitoxantrone therapeutic index.
منابع مشابه
Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro.
Resistance to anti-cancer chemotherapies often leads to regional failure, and can be caused by biochemical and/or physiological mechanisms. Biochemical mechanisms include the overexpression of resistance-conferring proteins. In contrast, physiological resistance involves the tumor microenvironment, and can be caused by poor perfusion, hypoxia and/or acidity. This communication investigates the ...
متن کاملPhenylthiourea Modified Highly Ordered Nanoporous Silica for Heavy Metal Ion (Hg2+ ) Trapping
The phenylthiourea-substituted triethoxysilane as a silane agent was synthesized and grafted on highly ordered nanoporous silica (LUS- 1) with a textured morphology and hexagonal array. This material (Tu-LUS-1) contained 0.8 mmol/g of soft base phenylthiourea group and surface area 760 m2 g-1 and was able to adsorb 0.75 mmolHg/g of TU-LUS-1 in endothermic reaction.
متن کاملHypoxia-induced mobilization of NHE6 to the plasma membrane triggers endosome hyperacidification and chemoresistance
The pH-dependent partitioning of chemotherapeutic drugs is a fundamental yet understudied drug distribution mechanism that may underlie the low success rates of current approaches to counter multidrug resistance (MDR). This mechanism is influenced by the hypoxic tumour microenvironment and results in selective trapping of weakly basic drugs into acidified compartments such as the extracellular ...
متن کاملIon-trapping, microsomal binding, and unbound drug distribution in the hepatic retention of basic drugs.
This study investigated the relative contribution of ion-trapping, microsomal binding, and distribution of unbound drug as determinants in the hepatic retention of basic drugs in the isolated perfused rat liver. The ionophore monensin was used to abolish the vesicular proton gradient and thus allow an estimation of ion-trapping by acidic hepatic vesicles of cationic drugs. In vitro microsomal s...
متن کاملSelective Removal of Lead (II) Ion from Wastewater Using Superparamagnetic Monodispersed Iron Oxide (Fe3O4) Nanoparticles as a Effective Adsorbent
This study investigated the applicability of polyethylene glycol (PEG-4000) coated Fe3O4 magnetic nanoparticles for the selective removal of toxic pb (II) ion from wastewater. The Fe3O4 magnetic nanoparticles of 24 nm were synthesized using a coprecipitation method and characterized by Scanning electron microscopy (SEM), vibratingsample magnetometer (VSM), and X-ray diffraction (XRD). SEM image...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical pharmacology
دوره 66 7 شماره
صفحات -
تاریخ انتشار 2003