Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease

نویسندگان

  • Ahmad Merhi
  • Nicolas Gérard
  • Elsa Lauwers
  • Martine Prévost
  • Bruno André
چکیده

BACKGROUND The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g., ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER). PRINCIPAL FINDINGS We used alanine-scanning mutagenesis to isolate 64 mutant Gap1 proteins altered in the NT, the CT, or one of the five TM-connecting intracellular loops (L2, -4, -6, -8 and -10). We found 17 mutations (in L2, L8, L10 and CT) impairing Gap1 exit from the ER. Of the 47 mutant proteins reaching the plasma membrane normally, two are unstable and rapidly down-regulated even when the nitrogen source is poor. Six others are totally inactive and another four, altered in a 16-amino-acid sequence in the NT, are resistant to ammonium-induced down-regulation. Finally, a mutation in L6 causes missorting of Gap1 from the secretory pathway to the vacuole. Interestingly, this direct vacuolar sorting seems to be independent of Gap1 ubiquitylation. CONCLUSIONS This study illustrates the importance of multiple intracellular regions of Gap1 in its secretion, transport activity, and down-regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endosomal sorting of GLUT4 and Gap1 is conserved between yeast and insulin-sensitive cells.

The insulin-regulated trafficking of the facilitative glucose transporter GLUT4 in human fat and muscle cells and the nitrogen-regulated trafficking of the general amino acid permease Gap1 in the yeast Saccharomyces cerevisiae share several common features: Both Gap1 and GLUT4 are nutrient transporters that are mobilised to the cell surface from an intracellular store in response to an environm...

متن کامل

A Split-Ubiquitin Two-Hybrid Screen for Proteins Physically Interacting with the Yeast Amino Acid Transceptor Gap1 and Ammonium Transceptor Mep2

Several nutrient permeases have been identified in yeast, which combine a transport and receptor function, and are called transceptors. The Gap1 general amino acid permease and the Mep2 ammonium permease mediate rapid activation by amino acids and by ammonium, respectively, of the protein kinase A (PKA) pathway in nitrogen-starved cells. Their mode of action is not well understood. Both protein...

متن کامل

Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae.

Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces rapid inactivation and degradation of the general amino acid permease Gap1 through a process requiring the Npi1/Rsp5 ubiquitin (Ub) ligase. In this study, we show that NH4+ induces endocytosis of Gap1, which is then delivered into the vacuole where it is degraded. This down-regulation is accompanied ...

متن کامل

A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins.

A toxic l-proline analogue, l-azetidine-2-carboxylic acid (AZC), causes misfolding of the proteins into which it is incorporated competitively with l-proline, thereby inhibiting the growth of the cells. AZC enters budding yeast Saccharomyces cerevisiae cells primarily through the general amino acid permease Gap1, not through the proline-specific permease Put4. We isolated an AZC-hypersensitive ...

متن کامل

α-Arrestins Aly1 and Aly2 Regulate Intracellular Trafficking in Response to Nutrient Signaling

Extracellular signals regulate trafficking events to reorganize proteins at the plasma membrane (PM); however, few effectors of this regulation have been identified. β-Arrestins relay signaling cues to the trafficking machinery by controlling agonist-stimulated endocytosis of G-protein-coupled receptors. In contrast, we show that yeast α-arrestins, Aly1 and Aly2, control intracellular sorting o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011