Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit.
نویسندگان
چکیده
A member of the polyomavirus enhancer binding protein 2/core binding factor (PEBP2/CBF) is composed of PEBP2 alphaB1/AML1 (as the alpha subunit) and a beta subunit. It plays an essential role in definitive hematopoiesis and is frequently involved in the chromosomal abnormalities associated with leukemia. In the present study, we report functionally separable modular structures in PEBP2 alphaB1 for DNA binding and for transcriptional activation. DNA binding through the Runt domain of PEBP2 alphaB1 was hindered by the adjacent carboxy-terminal region, and this inhibition was relieved by interaction with the beta subunit. Utilizing a reporter assay system in which both the alpha and beta subunits are required to achieve strong transactivation, we uncovered the presence of transcriptional activation and inhibitory domains in PEBP2 alphaB1 that were only apparent in the presence of the beta subunit. The inhibitory domain keeps the full transactivation potential of full-length PEBP2 alphaB1 below its maximum potential. Fusion of the transactivation domain of PEBP2 alphaB1 to the yeast GAL4 DNA-binding domain conferred transactivation potential, but further addition of the inhibitory domain diminished the activity. These results suggest that the activity of the alpha subunit as a transcriptional activator is regulated intramolecularly as well as by the beta subunit. PEBP2 alphaB1 and the beta subunit were targeted to the nuclear matrix via signals distinct from the nuclear localization signal. Moreover, the transactivation domain by itself was capable of associating with the nuclear matrix, which implies the existence of a relationship between transactivation and nuclear matrix attachment.
منابع مشابه
Different binding site requirements for binding and activation for the bipartite enhancer factor EF-1A.
The human transcription factor EF-1A binds to the purine-rich E1A core enhancer sequence in the adenovirus E1A and E4 and polyomavirus enhancer regions. The consensus binding site for EF-1A resembles that of members of the ets domain protein family. EF-1A activation of transcription requires a dimeric binding site. Analysis of binding sites containing point mutations revealed that EF-1A binding...
متن کاملPEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells.
The myeloperoxidase (MPO) and neutrophil elastase genes are expressed specifically in immature myeloid cells. The integrity of a polyomavirus enhancer core sequence, 5'-AACCACA-3', is critical to the activity of the murine MPO proximal enhancer. This element binds two species, myeloid nuclear factors 1 alpha and 1 beta (MyNF1 alpha and -beta), present in 32D cl3 myeloid cell nuclear extracts. T...
متن کاملDesigning, Optimization and Construction of Myelin Basic Protein Coding Sequence Binding to the Immunogenic Subunit of Cholera Toxin
Abstract Background and Objectives: Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease. Mucosal feeding of myelin basic protein binding to the cholera toxin B subunit can reduce the intensity of the immune response in MS patients. Expression system, the domain composition of the fusion protein, accessibility of two domains, codon adaptation index (CAI) and GC contents are v...
متن کاملRNA polymerase subunit requirements for activation by the enhancer-binding protein Rhodobacter capsulatus NtrC.
Rhodobacter capsulatus NtrC is an enhancer-binding protein that activates transcription of the R. capsulatus sigma 70 RNA polymerase, but does not activate the Escherichia coli sigma 70-RNA polymerase at the nifA1 promoter. We utilized R. capsulatus:E. coli hybrid RNA polymerases assembled in vitro to investigate the subunits required for protein-protein interaction with RcNtrC at the nifA1mut1...
متن کاملFusion of Cholera toxin B subunit (ctxB) with Shigella dysenteriae type I toxin B subunit (stxB), Cloning and Expression that in E. coli
Background and Objective: Shiga toxin (STx) is the main virulence factor in Shigella Dysenteriae type I and is composed of an enzymatic subunit STxA monomer and a receptor-binding STxB homopentamer. Shigella toxin B subunit (STxB) is a non-toxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with glycolipid (Gb3). Cholera toxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 18 5 شماره
صفحات -
تاریخ انتشار 1998