A Hopfield-Type Neural Network Based Model for Temporal Constraints
نویسنده
چکیده
In this paper we present an approximation method based on discrete Hopfield neural network (DHNN) for solving temporal constraint satisfaction problems. This method is of interest for problems involving numeric and symbolic temporal constraints and where a solution satisfying the constraints of the problem needs to be found within a given deadline. More precisely the method has the ability to provide a solution with a quality proportional to the allocated process time. The quality of the solution corresponds here to the number of satisfied constraints. This property is very important for real world applications including reactive scheduling and planning and also for over constrained problems where a complete solution cannot be found. Experimental study, in terms of time cost and quality of the solution provided, of the DHNN based method we propose provides promising results comparing to the other exact methods based on branch and bound and approximation methods based on stochastic local search.
منابع مشابه
Adaptive Fields: Distributed Representations of Classically Conditioned Associations
Present neural models of classical conditioning all suffer from the same shortcoming: local representation of information (therefore, very precise neural prewiring is necessary). As an alternative we develop two neural models of classical conditioning which rely on distributed representations of information. Both models are of the Hopfield type. In the first model the existence of transmission ...
متن کاملNeural coordination can be enhanced by occasional interruption of normal firing patterns: A self-optimizing spiking neural network model
The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attr...
متن کاملExtended Hopfield models for combinatorial optimization
The extended Hopfield neural network proposed by Abe et al. for solving combinatorial optimization problems with equality and/or inequality constraints has the drawback of being frequently stabilized in states with neurons of ambiguous classification as active or inactive. We introduce in the model a competitive activation mechanism and we derive a new expression of the penalty energy allowing ...
متن کاملمحاسبه ظرفیت شبکه عصبی هاپفیلد و ارائه روش عملی افزایش حجم حافظه
The capacity of the Hopfield model has been considered as an imortant parameter in using this model. In this paper, the Hopfield neural network is modeled as a Shannon Channel and an upperbound to its capacity is found. For achieving maximum memory, we focus on the training algorithm of the network, and prove that the capacity of the network is bounded by the maximum number of the ortho...
متن کاملEstimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization
In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal on Artificial Intelligence Tools
دوره 13 شماره
صفحات -
تاریخ انتشار 2004