Local Position Classification for Pattern Discovery in Multivariate Sequential Data
نویسنده
چکیده
Traditional sequential data analysis largely depends on the magnitude of the data with the geometric features of individual data points sometimes being regarded as noise to such analysis. To explore whether these geometric features alone carry some useful information for a better understanding of hidden facts contained in the sequential data, a new method called local position classification (LPC) is proposed in this paper. LPC works on extracting local geometric features of individual data points. The correlated geometric features in different variants in the same sequential data are then classified into some LPC clusters for further interpretation. This semi-quantitative method is easy to use and also a simple tool to estimate possible correlation between two categories in the same series. To exclude the unrelated categories from LPC clusters, a selective correlation analysis (SCA) is combined with LPC so as to make both complement with each other. Analysis of email entries over a year in an Australian university demonstrated that LPC and its combination with SCA could become a new effective tool for discovering useful patterns contained in sequential data.
منابع مشابه
Does Fundraising Have Meaningful Sequential Patterns? The Case of Fintech Startups
Nowadays, fundraising is one of the most important issues for both Fintech investors and startups. The pattern of fundraising in terms of “number and type of rounds and stages needed” are important. The diverse features and factors that could stem from Fintech business models which can influence success are of the key issues in shaping these patterns. This study applied the top 100 KPMG Fintech...
متن کاملMining local process models
In this paper we describe a method to discover frequent behavioral patterns in event logs. We express these patterns as local process models. Local process model mining can be positioned in-between process discovery and episode / sequential pattern mining. The technique presented in this paper is able to learn behavioral patterns involving sequential composition, concurrency, choice and loop, l...
متن کاملAnalyzing Student Inquiry Data Using Process Discovery and Sequence Classification
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and social networks. As an example of our current resear...
متن کاملDiscovery of Shifting Patterns in Sequence Classification
In this paper, we investigate the multi-variate sequence classification problem from a multi-instance learning perspective. Real-world sequential data commonly show discriminative patterns only at specific time periods. For instance, we can identify a cropland during its growing season, but it looks similar to a barren land after harvest or before planting. Besides, even within the same class, ...
متن کاملMethods for the Efficient Discovery of Large Item-Indexable Sequential Patterns
An increasingly relevant set of tasks, such as the discovery of biclusters with order-preserving properties, can be mapped as a sequential pattern mining problem on data with item-indexable properties. An item-indexable database, typically observed in biomedical domains, does not allow item repetitions per sequence and is commonly dense. Although multiple methods have been proposed for the effi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012