Polymorphic competence peptides do not restrict recombination in Streptococcus pneumoniae.

نویسندگان

  • Omar E Cornejo
  • Lesley McGee
  • Daniel E Rozen
چکیده

Understanding the factors that limit recombination in bacteria is critical in order to better understand and assess its effects on genetic variation and bacterial population genetic structure. Transformation in the naturally competent bacterium, Streptococcus pneumoniae, is regulated by a polymorphic competence (com) apparatus. It has been suggested that polymorphic types, called pherotypes, generate and maintain subpopulation genetic structure within this species. We test predictions stemming from this hypothesis using a cosmopolitan sample of clinical pneumococcal isolates. We sequenced the locus encoding the peptide that induces competence (comC) to assign clones to each known pherotype class and then used multilocus sequence typing to determine whether there is significant genetic differentiation between pherotypes subgroups. We find two dominant pherotypes within our sample, and both are maintained at high frequencies (CSP1 74%, CSP2 26%). Our analyses fail to detect significant genetic differentiation between pherotype groups and find strong evidence, from a coalescent analysis, for interpherotype recombination. In addition, our analyses indicate that positive selection may account for the maintenance of the fixed polymorphism in this locus (comC). Altogether, these results fail to support the prediction that the polymorphism in the competence system acts to limit recombination within S. pneumoniae populations. We discuss why this result is expected given the mechanism underlying transformation and outline a scenario to explain the evolution of polymorphism in the competence system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pherotype Polymorphism in Streptococcus pneumoniae Has No Obvious Effects on Population Structure and Recombination

Natural transformation in the Gram-positive pathogen Streptococcus pneumoniae occurs when cells become "competent," a state that is induced in response to high extracellular concentrations of a secreted peptide signal called competence stimulating peptide (CSP) encoded by the comC locus. Two main CSP signal types (pherotypes) are known to dominate the pherotype diversity across strains. Using 4...

متن کامل

Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation.

Several streptococcal species are able to take up naked DNA from the environment and integrate it into their genomes by homologous recombination. This process is called natural transformation. In Streptococcus pneumoniae and related streptococcal species, competence for natural transformation is induced by a peptide pheromone through a quorum-sensing mechanism. Recently we showed that induction...

متن کامل

Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population.

Naturally competent bacteria have the ability to take up free DNA from the surrounding medium and incorporate this DNA into their genomes by homologous recombination. In naturally competent Streptococcus pneumoniae, and related streptococcal species from the mitis phylogenetic group, the competent state is not a constitutive property but is induced by a peptide pheromone through a quorum-sensin...

متن کامل

An unstable competence-induced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae.

Natural genetic transformation in Streptococcus pneumoniae entails transcriptional activation of at least two sets of genes. One set of genes, activated by the competence-specific response regulator ComE, is involved in initiating competence, whereas a second set is activated by the competence-specific alternative sigma factor ComX and functions in DNA uptake and recombination. Here we report a...

متن کامل

Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation.

Competence for genetic transformation in Streptococcus pneumoniae is regulated by a quorum-sensing system encoded by two genetic loci, comCDE and comAB. Additional competence-specific operons, cilA, cilB, cilC, cilD, cilE, cinA-recA, coiA, and cfl, involved in the DNA uptake process and recombination, share an unusual consensus sequence at -10 and -25 in the promoter, which is absent from the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2010