Robust Fusion of Irregularly Sampled Data Using Adaptive Normalized Convolution
نویسندگان
چکیده
We present a novel algorithm for image fusion from irregularly sampled data. The method is based on the framework of normalized convolution (NC), in which the local signal is approximated through a projection onto a subspace. The use of polynomial basis functions in this paper makes NC equivalent to a local Taylor series expansion. Unlike the traditional framework, however, the window function of adaptive NC is adapted to local linear structures. This leads to more samples of the same modality being gathered for the analysis, which in turn improves signal-to-noise ratio and reduces diffusion across discontinuities. A robust signal certainty is also adapted to the sample intensities to minimize the influence of outliers. Excellent fusion capability of adaptive NC is demonstrated through an application of super-resolution image reconstruction. keywords: adaptive normalized convolution, image fusion, irregularly sampled data, superresolution, robust error norm.
منابع مشابه
Continuous normalized convolution
The problem of signal estimation for sparsely and irregularly sampled signals is dealt with using continuous normalized convolution. Image values on real-valued positions are estimated using integration of signals and certainties over a neighbourhood employing a local model of both the signal and the used discrete filters. The result of the approach is that an output sample close to signals wit...
متن کاملPrediction from off-grid samples using continuous normalized convolution
This paper presents a novel method for performing fast estimation of data samples on a desired output grid from samples on an irregularly sampled grid. The output signal is estimated using integration of signals over a neighbourhood employing a local model of the signal using discrete filters. The strength of the method is demonstrated in motion compensation examples by comparing to traditional...
متن کاملNormalized averaging using adaptive applicability functions with application in image reconstruction from sparsely and randomly sampled data
In this paper we describe a new strategy for using local structure adaptive filtering in normalized convolution. The shape of the filter, used as the applicability function in the context of normalized convolution, adapts to the local image structure and avoids filtering across borders. The size of the filter is also adaptable to the local sampling density to avoid unnecessary smoothing over hi...
متن کاملNormalized Averaging Using Adaptive Applicability Functions with Applications in Image Reconstruction from Sparsely and Randomly Sampled Data
In this paper we describe a new strategy for using local structure adaptive filtering in normalized convolution. The shape of the filter, used as the applicability function in the context of normalized convolution, adapts to the local image structure and avoids filtering across borders. The size of the filter is also adaptable to the local sampling density to avoid unnecessary smoothing over hi...
متن کاملImage Reconstruction by Prioritized Incremental Normalized Convolution
A priority-based method for pixel reconstruction and incremental hole filling in incomplete images and 3D surface data is presented. The method is primarily intended for reconstruction of occluded areas in 3D surfaces and makes use of a novel prioritizing scheme, based on a pixelwise defined confidence measure, that determines the order in which pixels are iteratively reconstructed. The actual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006