Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells
نویسندگان
چکیده
Lead halide perovskites have recently been used as light absorbers in hybrid organic–inorganic solid-state solar cells, with efficiencies as high as 15% and open-circuit voltages of 1 V. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking. Here, we investigate the photoinduced charge transfer processes at the surface of the perovskite using time-resolved techniques. Transient laser spectroscopy and microwave photoconductivity measurements were applied to TiO2 and Al2O3 mesoporous films impregnated with CH3NH3PbI3 perovskite and the organic hole-transporting material spiro-OMeTAD. We show that primary charge separation occurs at both junctions, with TiO2 and the hole-transporting material, simultaneously, with ultrafast electron and hole injection taking place from the photoexcited perovskite over similar timescales. Charge recombination is shown to be significantly slower on TiO2 than on Al2O3 films.
منابع مشابه
Photoinduced processes in lead iodide perovskite solid-state solar cells
Organic-inorganic hybrid systems based on lead halide compounds have recently encountered considerable success as light absorbers in solid-state solar cells. Herein we show how fundamental mechanistic processes in mesoporous oxide films impregnated with CH3NH3PbI3 can be investigated by time resolved techniques. In particular, charge separation reactions such as electron injection into the tita...
متن کاملInterfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.
Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectr...
متن کاملUnravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy
The hybrid perovskite methylammonium lead iodide CH3NH3PbI3 recently revealed its potential for the manufacturing of low-cost and efficient photovoltaic cells. However, many questions remain unanswered regarding the physics of the charge carrier conduction. In this respect, it is known that two structural phase transitions, occurring at temperatures near 160 and 310 K, could profoundly change t...
متن کاملPartially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells
Metal halide perovskites have emerged as materials of high interest for solar energy-to-electricity conversion, and in particular, the use of mixed-ion structures has led to high power conversion efficiencies and improved stability. For this reason, it is important to develop means to obtain atomic level understanding of the photoinduced behavior of these materials including processes such as p...
متن کاملCharge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems
Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014