Xenon-based molecular sensors in lipid suspensions.
نویسندگان
چکیده
There have been many proposals to use xenon-based molecular sensors in biological settings. Fundamental to understanding the properties of these sensors in vivo is characterizing their behavior in lipid environments. We report the investigation of xenon-based molecular sensors in suspensions of lipid vesicles with a size comparable to cells. We detail spectroscopic properties of sensors associated with lipid vesicles as well as those in equilibrium in the surrounding solution. We characterize the dependence of the spectral parameters on temperature, relevant for studies at physiological temperatures. We also demonstrate the ability to perform selective saturation transfer (Hyper-CEST) between sensor, both lipid bound and unbound, and the bulk solution. Lastly, we demonstrate the applicability of saturation transfer in the heterogeneous medium as an imaging modality.
منابع مشابه
Xenon NMR: chemical shifts of a general anesthetic in common solvents, proteins, and membranes.
The rare gas xenon contains two NMR-sensitive isotopes in high natural abundance. The nuclide 129Xe has a spin of 1/2: 131Xe is quadrupolar with a spin of 3/2. The complementary NMR characteristics of these nuclei provide a unique opportunity for probing their environment. The method is widely applicable because xenon interacts with a useful range of condensed phases including pure liquids, pro...
متن کاملBand-selective chemical exchange saturation transfer imaging with hyperpolarized xenon-based molecular sensors.
Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the satur...
متن کاملHyperpolarized xenon-based molecular sensors for label-free detection of analytes.
Nuclear magnetic resonance (NMR) can reveal the chemical constituents of a complex mixture without resorting to chemical modification, separation, or other perturbation. Recently, we and others have developed magnetic resonance agents that report on the presence of dilute analytes by proportionately altering the response of a more abundant or easily detected species, a form of amplification. On...
متن کاملA xenon-based molecular sensor assembled on an MS2 viral capsid scaffold.
In MRI, anatomical structures are most often differentiated by variations in their bulk magnetic properties. Alternatively, exogenous contrast agents can be attached to chemical moieties that confer affinity to molecular targets; the distribution of such contrast agents can be imaged by magnetic resonance. Xenon-based molecular sensors are molecular imaging agents that rely on the reversible ex...
متن کاملExploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations
Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance
دوره 205 2 شماره
صفحات -
تاریخ انتشار 2010