Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions

نویسندگان

  • Grégoire Allaire
  • Yves Capdeboscq
  • Marjolaine Puel
  • GRÉGOIRE ALLAIRE
  • YVES CAPDEBOSCQ
چکیده

We study the asymptotic behavior of the rst eigenvalue and eigenfunction of a one-dimensional periodic elliptic operator with Neumann boundary conditions. The second order elliptic equation is not self-adjoint and is singularly perturbed since, denoting by ε the period, each derivative is scaled by an ε factor. The main di culty is that the domain size is not an integer multiple of the period. More precisely, for a domain of size 1 and a given fractional part 0 ≤ δ < 1, we consider a sequence of periods n = 1/(n + δ) with n ∈ N. In other words, the domain contains n entire periodic cells and a fraction δ of a cell cut by the domain boundary. According to the value of the fractional part δ, di erent asymptotic behaviors are possible: in some cases an homogenized limit is obtained, while in other cases the rst eigenfunction is exponentially localized at one of the extreme points of the domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

A Singularly Perturbed Boundary Value Problems with Fractional Powers of Elliptic Operators

A boundary value problem for a fractional power 0 < ε < 1 of the second-order elliptic operator is considered. The boundary value problem is singularly perturbed when ε→ 0. It is solved numerically using a time-dependent problem for a pseudo-parabolic equation. For the auxiliary Cauchy problem, the standard two-level schemes with weights are applied. The numerical results are presented for a mo...

متن کامل

Existence and asymptotic stability of a periodic solution with boundary layers of reaction-diffusion equations with singularly perturbed Neumann boundary conditions

We consider singularly perturbed reaction-diffusion equations with singularly perturbed Neumann boundary conditions. We establish the existence of a time-periodic solution u(x, t, ε) with boundary layers and derive conditions for their asymptotic stability The boundary layer part of u(x, t, ε) is of order one, which distinguishes our case from the case of regularly perturbed Neumann boundary co...

متن کامل

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011