Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO2-Pt Anode

نویسندگان

  • Yaning Wang
  • Xu Guo
  • Jinglu Li
  • Yingnan Yang
  • Zhongfang Lei
  • Zhenya Zhang
چکیده

Electrochemical oxidation of ammonia was studied with an objective to enhance the selectivity of ammonia to nitrogen gas and to remove the by-products in an undivided electrochemical cell, in which various cathodes and Ti/RuO2-Pt anode were assembled. In the present study, anodic oxidation of ammonia and cathodic reduction of by-products were achieved, especially with Cu/Zn as cathode. In the presence of 1.0 g/L NaCl the ammonia-N decreased from 100.0 to 0 after 120 min electrolysis at current density of 30 mA/cm, and no nitrite was detected in the treated solution. The lowest amount of nitrate was formed with Cu/Zn as cathode during electrolysis due to its high reduction ability. Initial pH range from 7 and 9 and uncontrolled temperature were favorable for electrochemical ammonia oxidation and the ammonia oxidation rates with Cu/Zn cathode was higher than that with Ti and Fe cathode. The reduction rate increased with increasing current density in the range of 5 50 mA/cm. As ammonia could be completely removed by the simultaneous oxidation and reduction in this study, it is suitable for deep treatment of ammonia polluted water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.

Laboratory experiments were carried out on the kinetics and pathways of the electrochemical (EC) degradation of phenol at three different types of anodes, Ti/SnO2-Sb, Ti/RuO2, and Pt. Although phenol was oxidised by all of the anodes at a current density of 20 mA/cm2 or a cell voltage of 4.6 V, there was a considerable difference between the three anode types in the effectiveness and performanc...

متن کامل

Treatment of nitrate contaminated water using an electrochemical method.

Treatment of nitrate contaminated water which is unsuitable for biological removal using an electrochemical method with Fe as a cathode and Ti/IrO(2)-Pt as an anode in an undivided cell was studied. In the absence and presence of 0.50 g/L NaCl, the nitrate-N decreased from 100.0 to 7.2 and 12.9 mg/L in 180 min, respectively, and no ammonia and nitrite by-products were detected in the presence o...

متن کامل

Study on the Effect of Electrochemical Dechlorination Reduction of Hexachlorobenzene Using Different Cathodes

Hexachlorobenzene (HCB) is a persistent organic pollutant and poses great threat on ecosystem and human health. In order to investigate the degradation law of HCB, a RuO2/Ti material was used as the anode, meanwhile, zinc, stainless steel, graphite, and RuO2/Ti were used as the cathode, respectively. The gas chromatography (GC) was used to analyze the electrochemical products of HCB on differen...

متن کامل

Electrochemically-induced Reduction of Nitrate in Aqueous Solution

In this study, we evaluated the removal of nitrate from synthetic groundwater by a cathode followed by an anode electrode sequence in the electrochemical flow-through reactor. We also tested the feasibility of the applied electrode sequence to minimize the production of ammonia during the nitrate reduction. The performance of monometallic Fe, Cu, Ni, and carbon foam cathodes was tested under di...

متن کامل

Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013