Automatic Exudate Detection Using Eye Fundus Image Analysis Due to Diabetic Retinopathy

نویسندگان

  • Nasr Y. Garaibeh
  • Ma'mon A. Al-Smadi
  • Mohammad Al-Jarrah
چکیده

Diabetic retinopathy (damage to the retina) is a disease caused by complications of diabetes, which can eventually lead to blindness. It is an ocular manifestation of diabetes, a systemic disease, which affects up to 80 percent of all patients who have had diabetes for 10 years or more. Despite these intimidating statistics, research indicates that at least 90% of these new cases could be reduced if there was proper and vigilant treatment and monitoring of the patient eyes. The longer a person has diabetes, the higher his or her chances of developing diabetic retinopathy. In this paper, we introduced a new method for eye fundus image analysis, based on exudate segmentation. The proposed algorithm detects the existence of exudates and measures its distribution. In this paper, we classified images of eye fundus into no-exudate or have exudates. This initial classification helps physicians to initiate a treatment process for infected patients. The algorithm is tested using DIARETDB0. The results proved the reliability and robustness of algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method

Introduction: Diabetic retinopathy (DR) is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA...

متن کامل

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

Early Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods

Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses th...

متن کامل

Exudate detection in color retinal images for mass screening of diabetic retinopathy

The automatic detection of exudates in color eye fundus images is an important task in applications such as diabetic retinopathy screening. The presented work has been undertaken in the framework of the TeleOphta project, whose main objective is to automatically detect normal exams in a tele-ophthalmology network, thus reducing the burden on the readers. A new clinical database, e-ophtha EX, co...

متن کامل

Automatic Detection of Hard Exudates in Diabetic Retinopathy Using Morphological Segmentation and Fuzzy Logic

Retinal image analysis is an essential step in the diagnosis of various eye diseases. Diabetic Retinopathy (DR) is globally the primary cause of visual impairment and blindness in diabetic patients. Early diagnosis through regular screening and timely treatment has proven beneficial in preventing visual impairment and blindness. In this paper we have proposed a novel approach to automatically d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer and Information Science

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014