Development of C - SiC ceramic compact plate heat exchangers for high temperature heat transfer applications

نویسندگان

  • Per F. Peterson
  • Haihua Zhao
  • Fenglei Niu
  • Wensheng Huang
  • Jan Schulte-Fischedick
چکیده

This paper investigates the use of polymer and liquid silicon infiltrated carbon/siliconcarbide composite (C-SiC) materials for the development of inexpensive compact heat exchangers, as part of efforts for thermochemical hydrogen production. These heat exchangers will be capable of operating in the temperature range of 500 to 1400°C with highpressure helium, liquid fluoride salts (a potential intermediate heat transfer fluid), or other corrosive gases such as SO3 and HI. C-SiC composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1400°C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, allowing the fabrication of highly complex component geometries. To meet cost goal, candidate materials must have relatively low bulk costs, and fabrication methods must extrapolate to low-cost mass manufacturing. Composite compact offset fin plate heat exchangers concept has been developed to meet the above functional and cost goals, which will serve as the intermediate heat exchanger (IHX) to transfer high temperature heat from a helium-cooled high temperature nuclear reactor to a liquid salt intermediate loop which couples to hydrogen production loops. The IHX uses offset fin structures with fin width and height at 1 mm scale. The detailed local and global thermal mechanical stress analyses show that the designed composite plate heat exchanger can tolerate pressure difference up to 9 MPa and large temperature difference from two fluid sides. Two potential low cost methods to fabricate C-SiC are liquid silicon (melt) infiltration (MI) and Polymer Infiltration and Pyrolization (PIP). Mechanical strength tests on MI coupons show above 200 MPa failure stress. Leak-tight pyrolytic carbon coatings have been successfully applied on MI C-SiC coupons and excellent helium hermeticity were obtained under high pressure and stress after coating. PIP plates with high-quality millimeter-scale fins formed using teflon molds have been successfully demonstrated. The teflon molds were proven to be reusable, so that the process could be extrapolated to inexpensive mass fabrication of compact ceramic heat exchangers. Prototype test heat exchangers are being fabricated basing on both MI and PIP methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of hemispherical chevrons angle, depth, and pitch on the convective heat transfer coefficient and pressure drop in compact plate heat exchangers

Plate heat exchangers are widely used in industries due to their special characteristics, such as high thermal efficiency, small size, light weight, easy installation, maintenance, and cleaning. The purpose of this study is to consider the effect of depth, angle, and pitch of hemispheric Chevrons on the convective heat transfer coefficient and pressure drop. In the simulation of the heat ex...

متن کامل

The effect of hemispherical chevrons angle, depth, and pitch on the convective heat transfer coefficient and pressure drop in compact plate heat exchangers

Plate heat exchangers are widely used in industries due to their special characteristics, such as high thermal efficiency, small size, light weight, easy installation, maintenance, and cleaning. The purpose of this study is to consider the effect of depth, angle, and pitch of hemispheric Chevrons on the convective heat transfer coefficient and pressure drop. In the simulation of the heat ex...

متن کامل

Model Based Control of Compact Heat Exchangers Independent of the Heat Transfer Behavior

Compact heat exchangers have a wide range of applications where standard control strategies typically rely on the knowledge of the heat transfer model and thus on the overall heat transfer coefficient. In particular for compact plate heat exchangers, the overall heat transfer coefficient strongly varies with the manufacturer’s plate design and has to be identified by means of extensive measurem...

متن کامل

The effect of Geometrical parameters on heat transfer coefficient in helical double tube exchangers

Helical coil heat exchangers are widely used in industrial applications ranging fromcryogenic processes, air-conditioning, and nuclear reactors to waste heat recovery due totheir compact size and high heat transfer coefficient. In this kind of heat exchangers, flowand heat transfer are complicated. This paper reports a numerical investigation of theinfluence of different parameters such as coil...

متن کامل

Full Analysis of Low Finned Tube Heat Exchangers

In this paper, first the governing parameters characterizing low-finned tubes are reviewed. Second, the more important of the available performance correlations are compared with the available experimental data. The most reliable one can be employed to develop a pressure drop relationship, which has already been used in an algorithm for exchanger sizing. Also a means for the identification of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006