Atomic Force Microscopy Studies Provide Direct Evidence for Dimerization of the HIV Restriction Factor APOBEC3G*
نویسندگان
چکیده
APOBEC3G (A3G) is an antiviral protein that binds RNA and single-stranded DNA (ssDNA). The oligomerization state of A3G is likely to be influenced by these nucleic acid interactions. We applied the power of nanoimaging atomic force microscopy technology to characterize the role of ssDNA in A3G oligomerization. We used recombinant human A3G prepared from HEK-293 cells and specially designed DNA substrates that enable free A3G to be distinguished unambiguously from DNA-bound protein complexes. This DNA substrate can be likened to a molecular ruler because it consists of a 235-bp double-stranded DNA visual tag spliced to a 69-nucleotide ssDNA substrate. This hybrid substrate enabled us to use volume measurements to determine A3G stoichiometry in both free and ssDNA-bound states. We observed that free A3G is primarily monomeric, whereas ssDNA-complexed A3G is mostly dimeric. A3G stoichiometry increased slightly with the addition of Mg(2+), but dimers still predominated when Mg(2+) was depleted. A His-248/His-250 Zn(2+)-mediated intermolecular bridge was observed in a catalytic domain crystal structure (Protein Data Bank code 3IR2); however, atomic force microscopy analyses showed that the stoichiometry of the A3G-ssDNA complexes changed insignificantly when these residues were mutated to Ala. We conclude that A3G exchanges between oligomeric forms in solution with monomers predominating and that this equilibrium shifts toward dimerization upon binding ssDNA.
منابع مشابه
Computational Model and Dynamics of Monomeric Full-Length APOBEC3G
APOBEC3G (A3G) is a restriction factor that provides innate immunity against HIV-1 in the absence of viral infectivity factor (Vif) protein. However, structural information about A3G, which can aid in unraveling the mechanisms that govern its interactions and define its antiviral activity, remains unknown. Here, we built a computer model of a full-length A3G using docking approaches and molecul...
متن کاملAPOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.
APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether AP...
متن کاملCrystal structures of APOBEC3G N-domain alone and its complex with DNA
APOBEC3G (A3G) is a potent restriction factor of HIV-1. The N-terminal domain of A3G (A3G-CD1) is responsible for oligomerization and nucleic acid binding, both of which are essential for anti-HIV activity. As a countermeasure, HIV-1 viral infectivity factor (Vif) binds A3G-CD1 to mediate A3G degradation. The structural basis for the functions of A3G-CD1 remains elusive. Here, we report the cry...
متن کاملAtomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping
Atomic force microscopy (AFM) allows the study of single protein-DNA interactions such as those observed with the Type I Restriction-Modification systems. The mechanisms employed by these systems are complicated and understanding them has proved problematic. It has been known for years that these enzymes translocate DNA during the restriction reaction, but more recent AFM work suggested that th...
متن کاملInteraction of APOBEC3A with DNA Assessed by Atomic Force Microscopy
The APOBEC3 family of DNA cytosine deaminases functions to block the spread of endogenous retroelements and retroviruses including HIV-1. Potency varies among family members depending on the type of parasitic substrate. APOBEC3A (A3A) is unique among the human enzymes in that it is expressed predominantly in myeloid lineage cell types, it is strongly induced by innate immune agonists such as ty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 286 شماره
صفحات -
تاریخ انتشار 2011