Building Joint Spaces for Relation Extraction

نویسندگان

  • Chang Wang
  • Liangliang Cao
  • James Fan
چکیده

In this paper, we present a novel approach for relation extraction using only term pairs as the input without textual features. We aim to build a single joint space for each relation which is then used to produce relation specific term embeddings. The proposed method fits particularly well for domains in which similar arguments are often associated with similar relations. It can also handle the situation when the labeled data is limited. The proposed method is evaluated both theoretically with a proof for the closed-form solution and experimentally with promising results on both DBpedia and medical relations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CoType: Joint Extraction of Typed Entities and Relations with Knowledge Bases

Extracting entities and relations for types of interest from text is important for understanding massive text corpora. Traditionally, systems of entity relation extraction have relied on human-annotated corpora for training and adopted an incremental pipeline. Such systems require additional human expertise to be ported to a new domain, and are vulnerable to errors cascading down the pipeline. ...

متن کامل

DENSITY AND QUALITY OF SPACES IN RELATION TO BUILT-FORMS: The Case of Commercially Active Centers in Addis Ababa (Pedestrian Density and Pedestrian Priority)

ABSTRACT A vibrant and commercially active center is often the result of interesting, diverse building styles and or built-forms, pedestrian density along with variety of quality public places where people feel comfortable, spending time and shopping items for domestic and commercial functions in cities like Addis Ababa. The scale and design of buildings, pedestrian density, and other phy...

متن کامل

Free multi-floor indoor space extraction from complex 3D building models

Intelligent navigation and facility management in complex indoor environments are issues at the forefront of geospatial information science. Indoor spaces with fine geometric and semantic descriptions provide a solid foundation for various indoor applications, but it is difficult to comprehensively extract free multi-floor indoor spaces from complex three-dimensional building models, such as th...

متن کامل

Bidirectional Integration of Pipeline Models

Traditional information extraction systems adopt pipeline strategies, which are highly ineffective and suffer from several problems such as error propagation. Typically, pipeline models fail to produce highly-accurate final output. On the other hand, there has been growing interest in integrated or joint models which explore mutual benefits and perform multiple subtasks simultaneously to avoid ...

متن کامل

Learning Entity and Relation Embeddings for Knowledge Graph Completion

Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016