Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease☆

نویسندگان

  • Samantha Giordano
  • Victor Darley-Usmar
  • Jianhua Zhang
چکیده

Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1) radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2) radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3) since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways

Trehalose, as a natural disaccharide, is known as an autophagy inducer. The neuroprotectiveeffects of trehalose in the rat model of Parkinson′s disease were the aim of the present study.Parkinson′s disease model was induced by injecting 6-hydroxydopamine (6-OHDA) in thestriatum of male Wistar rats. Apomorphine-induced behavior and substantia nigra neuronalcounts were app...

متن کامل

Trehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways

Trehalose, as a natural disaccharide, is known as an autophagy inducer. The neuroprotectiveeffects of trehalose in the rat model of Parkinson′s disease were the aim of the present study.Parkinson′s disease model was induced by injecting 6-hydroxydopamine (6-OHDA) in thestriatum of male Wistar rats. Apomorphine-induced behavior and substantia nigra neuronalcounts were app...

متن کامل

P162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases

Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...

متن کامل

Neuronal Autophagy: A Housekeeper or a Fighter in Neuronal Cell Survival?

Neurons have highly dynamic cellular processes for their proper functions such as cell growth, synaptic formation, or synaptic plasticity by regulating protein synthesis and degradation. Therefore, the quality control of proteins in neurons is essential for their physiology and pathology. Autophagy is a cellular degradation pathway by which cytosolic components are sequestered in autophagosomes...

متن کامل

Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers.

Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014