Data-driven Local Coordinate Systems for Image-Based Rendering
نویسندگان
چکیده
Image-based representations of an object profit from known geometry. The more accurate this geometry is known, the better corresponding pixels in the different images can be aligned, which leads to less artifacts and better compression performance. For opaque objects the per-pixel data can then be interpreted as a sampling of the BRDF at the respective surface point. In order to parameterize this sampled data a coordinate frame has to be defined. In previous work this coordinate frame was either the global frame or a local frame derived from the base geometry. Both approaches lead to misalignments between sample vectors: Features of basically very similar BRDFs will be shifted to different regions in the sample vector leading to poor compression performance. In order to improve alignment between the sampled BRDFs in image-based rendering, we propose an optimization algorithm which determines consistent coordinate frames for every sample point on the object surface. This way we efficiently align the features even of anisotropic reflection functions and reconstruct approximate local coordinate frames without performing an explicit 3D-reconstruction. The optimization is calculated efficiently by exploiting the Fourier-shift theorem for spherical harmonics. In order to deal with different materials in a scene, the technique is combined with a clustering algorithm. We demonstrate the utility of our method by applying it to BTFs and 6D surface reflectance fields.
منابع مشابه
Segmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملData-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation
This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training dat...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملClient Driven System of Depth Image Based Rendering
In this paper, we propose systems which can render free viewpoint images by using depth image based rendering for live video communications. Experimental results show that an image and depth transmission system is more suitable than an all multi view transmission and an only free viewpoint image transmission system. Especially in the image and depth transmission system, transmitting two images ...
متن کاملTransfer Functions in Direct Volume Rendering: Design, Interface, Interaction
A principle of direct volume rendering is that visualizations can be created without creating intermediate geometric structure, such as polygons comprising an isosurface, but simply by a “direct” mapping from volume data points to composited image elements. Together with traditional computer graphics elements such as camera, lighting, and shading, the central ingredient in that direct mapping i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 25 شماره
صفحات -
تاریخ انتشار 2006