Polarization dependent photocurrent in the Bi2Te3 topological insulator film for multifunctional photodetection
نویسندگان
چکیده
Three dimensional Z2 Topological insulator (TI) is an unconventional phase of quantum matter possessing insulating bulk state as well as time-reversal symmetry-protected Dirac-like surface state, which is demonstrated by extensive experiments based on surface sensitive detection techniques. This intriguing gapless surface state is theoretically predicted to exhibit many exotic phenomena when interacting with light, and some of them have been observed. Herein, we report the first experimental observation of novel polarization dependent photocurrent of photodetectors based on the TI Bi2Te3 film under irradiation of linearly polarized light. This photocurrent is linearly dependent on both the light intensity and the applied bias voltage. To pursue the physical origin of the polarization dependent photocurrent, we establish the basic TI surface state model to treat the light irradiation as a perturbation, and we adopt the Boltzmann equation to calculate the photocurrent. It turns out that the theoretical results are in nice qualitative agreement with the experiment. These findings show that the polycrystalline TI Bi2Te3 film working as a multifunctional photodetector can not only detect the light intensity, but also measure the polarization state of the incident light, which is remarkably different from conventional photodetectors that usually only detect the light intensity.
منابع مشابه
Polarization dependence of coherent phonon generation and detection in the three-dimensional topological insulator Bi2Te3
We have studied the polarization dependence of coherent phonons in the topological insulator Bi2Te3. Using polarization-dependent femtosecond pump-probe spectroscopy, we measured coherent phonons as a function of angle when the pump and probe polarizations were fixed, and the crystal orientation was rotated. For isotropic detection, depending on the spot position, oscillations either from only ...
متن کاملUltrahigh Sensitivity of Anomalous Hall Effect Sensor Based on Cr-Doped Bi2Te3 Topological Insulator Thin Films
Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi2Te3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in b...
متن کاملInterfacial bonding and structure of Bi2Te3 topological insulator films on Si(111) determined by surface x-ray scattering.
Interfacial topological states are a key element of interest for topological insulator thin films, and their properties can depend sensitively on the atomic bonding configuration. We employ in situ nonresonant and resonant surface x-ray scattering to study the interfacial and internal structure of a prototypical topological film system: Bi2Te3 grown on Si(111). The results reveal a Te-dominated...
متن کاملRobustness of topologically protected surface states in layering of Bi2Te3 thin films.
Bulk Bi2Te3 is known to be a topological insulator. We investigate surface states of Bi2Te3(111) thin films of one to six quintuple layers using density-functional theory including spin-orbit coupling. We construct a method to identify topologically protected surface states of thin film topological insulators. Applying this method to Bi2Te3 thin films, we find that the topological nature of the...
متن کاملAnomalous Photoelectric Effect of a Polycrystalline Topological Insulator Film
A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015