The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density.

نویسندگان

  • Thomas J Van de Ven
  • Hendrika M A VanDongen
  • Antonius M J VanDongen
چکیده

Abnormalities in dendritic spines have long been associated with cognitive dysfunction and neurodevelopmental delay, whereas rapid changes in spine shape underlie synaptic plasticity. The key regulators of cytoskeletal reorganization in dendrites and spines are the Rho GTPases, which modify actin polymerization in response to synaptic signaling. Rho GTPase activity is modulated by multiple regulatory proteins, some of which have been found to associate with proteins localized to spines. Here, we show that the nonkinase phorbol ester receptor alpha1-chimerin is present in dendrites and spines, where it binds to the NMDA receptor NR2A subunit in a phorbol ester-dependent manner. Alpha1-chimerin contains a GTPase activating (GAP) domain, with activity toward the Rho family member Rac1. Overexpression of alpha1-chimerin in cultured hippocampal neurons inhibits formation of new spines and removes existing spines. This reduction in spine density is mediated by Rac1 inhibition, because it depends critically on the presence of a functional GAP domain. Conversely, depletion of alpha1-chimerin leads to an increase in spine density, indicating that a basal inhibition of Rac1 maintains the number of spines at a submaximal level. The ability of alpha1-chimerin to modulate spine number requires an interaction with the NMDA receptor, because an alpha1-chimerin mutant that binds weakly to NR2A fails to decrease spine density. Together, these results suggest that alpha1-chimerin is able to modulate dendritic spine morphology by binding to synaptic NMDA receptors and locally inactivating Rac1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of acute exposure to ethanol on distribution of NR1 subunit of NMDA receptor of glutamate in cerebral cortex of chick embryo

Introduction: There is considerable evidence that glutamate-mediated excitatory neurotransmission plays an important role in mediating the behavioral actions of acutely administered ethanol. The aim of the present study was to investigate the effect of acute ethanol exposure on NR1 subunit of NMDA (n-methyl-d-aspartate) receptor distribution in the cerebral cortex of chick embryo on the 10th...

متن کامل

Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex.

It has been postulated that chronic administration of antidepressant drugs induces delayed structural and molecular adaptations at glutamatergic forebrain synapses that might underlie mood improvement. To gain further insight into these changes in the cerebral cortex, rats were treated with fluoxetine (flx) for 4 weeks. These animals showed decreased anxiety and learned helplessness. N-methyl-d...

متن کامل

بررسی تأثیر محرومیت از بینایی طی دوره بحرانی تکامل مغز بر بیان زیرواحدهای گیرنده NMDA در هیپوکامپ موش صحرایی

Background and purpose: Visual deprivation during critical period of brain development impairs structure and function of NMDA receptors in visual cortex. Parts of visual signals go to the hippocampus through the visual cortex. Therefore, this study aimed at investigating the effects of visual deprivation during critical period of brain development on NMDA receptor subunits expression in rats’ h...

متن کامل

Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132

MicroRNAs (miRNAs) are noncoding RNAs that suppress translation of specific mRNAs. The miRNA machinery interacts with fragile X mental retardation protein (FMRP), which functions as translational repressor. We show that miR-125b and miR-132, as well as several other miRNAs, are associated with FMRP in mouse brain. miR-125b and miR-132 had largely opposing effects on dendritic spine morphology a...

متن کامل

O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation

Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 41  شماره 

صفحات  -

تاریخ انتشار 2005