A Discontinuous Finite Element Approximation of Quasi-static Growth of Brittle Fractures
نویسنده
چکیده
We propose a discontinuous finite element approximation for a model of quasi-static growth of brittle fractures in linearly elastic bodies formulated by Francfort and Marigo, and based on the classical Griffith’s criterion. We restrict our analysis to the case of anti-planar shear and we consider discontinuous displacements which are piecewise affine with respect to a regular triangulation.
منابع مشابه
Ambrosio-tortorelli Approximation of Quasi-static Evolution of Brittle Fractures
We define a notion of quasistatic evolution for the elliptic approximation of the Mumford-Shah functional proposed by Ambrosio and Tortorelli. Then we prove that this regular evolution converges to a quasi static growth of brittle fractures in linearly elastic bodies.
متن کاملEigenfracture: An Eigendeformation Approach to Variational Fracture
We propose an approximation scheme for a variational theory of brittle fracture. In this scheme, the energy functional is approximated by a family of functionals depending on a small parameter and on two fields: the displacement field and an eigendeformation field that describes the fractures that occur in the body. Specifically, the eigendeformations allow the displacement field to develop jum...
متن کاملDiscontinuous Finite Element Approximation of Quasistatic Crack Growth in Finite Elasticity
We propose a time-space discretization of a general notion of quasistatic growth of brittle fractures in elastic bodies proposed in [13] by G. Dal Maso, G.A. Francfort, and R. Toader, which takes into account body forces and surface loads. We employ adaptive triangulations and prove convergence results for the total, elastic and surface energies. In the case in which the elastic energy is stric...
متن کاملBrittle fracture in polycrystalline microstructures with the extended nite element method
A two-dimensional numerical model of microstructural e ects in brittle fracture is presented, with an aim towards the understanding of toughening mechanisms in polycrystalline materials such as ceramics. Quasi-static crack propagation is modelled using the extended nite element method (X-FEM) and microstructures are simulated within the framework of the Potts model for grain growth. In the X-FE...
متن کاملCracking Elements Method for Simulating Complex Crack Growth
The cracking elements method (CEM) is a novel numerical approach for simulating fracture of quasi-brittle materials. This method is built in the framework of conventional finite element method (FEM) based on standard Galerkin approximation, which models the cracks with disconnected cracking segments. The orientation of propagating cracks is determined by local criteria and no explicit or implic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003