Ferroelectric Rashba semiconductors as a novel class of multifunctional materials
نویسنده
چکیده
Via Vetoio 10, 67100 L’ Aquila, Italy e-mail: [email protected] The discovery of novel properties, effects or microscopic mechanisms in modern materials science is often driven by the quest for combining, into a single compound, several functionalities: not only the juxtaposition of the latter functionalities, but especially their coupling, can open new horizons in basic condensed matter physics, in materials science and technology. Semiconductor spintronics makes no exception. In this context, we have discovered by means of density-functional simulations that, when a sizeable spin-orbit coupling is combined with ferroelectricity, such as in GeTe, one obtains novel multifunctional materials—called Ferro-Electric Rashba Semi-Conductors (FERSC)—where, thanks to a giant Rashba spin-splitting, the spin texture is controllable and switchable via an electric field. This peculiar spin-electric coupling can find a natural playground in small-gap insulators, such as chalcogenides, and can bring brand new assets into the field of electrically-controlled semiconductor spintronics.
منابع مشابه
Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors
Entanglement of the spin-orbit and magnetic order in multiferroic materials bears a strong potential for engineering novel electronic and spintronic devices. Here, we explore the electron and spin structure of ferroelectric α-GeTe thin films doped with ferromagnetic Mn impurities to achieve its multiferroic functionality. We use bulk-sensitive soft-X-ray angle-resolved photoemission spectroscop...
متن کاملSwitchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites.
The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driv...
متن کاملHexagonal ABC semiconductors as ferroelectrics.
We use a first-principles rational-design approach to identify a previously unrecognized class of ferroelectric materials in the P6(3)mc LiGaGe structure type. We calculate structural parameters, polarization, and ferroelectric well depths both for reported and as-yet hypothetical representatives of this class. Our results provide guidance for the experimental realization and further investigat...
متن کاملNew perspectives for Rashba spin-orbit coupling.
In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of ...
متن کاملHollandites as a new class of multiferroics
Discovery of new complex oxides that exhibit both magnetic and ferroelectric properties is of great interest for the design of functional magnetoelectrics, in which research is driven by the technologically exciting prospect of controlling charges by magnetic fields and spins by applied voltages, for sensors, 4-state logic, and spintronics. Motivated by the notion of a tool-kit for complex oxid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014