Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion.

نویسندگان

  • Hsiao D Lieu
  • Shannon K Withycombe
  • Quinn Walker
  • James X Rong
  • Rosemary L Walzem
  • Jinny S Wong
  • Robert L Hamilton
  • Edward A Fisher
  • Stephen G Young
چکیده

BACKGROUND LDL receptor-deficient "apolipoprotein (apo)-B100-only" mice (Ldlr-/-Apob100/100 have elevated LDL cholesterol levels on a chow diet and develop severe aortic atherosclerosis. We hypothesized that both the hypercholesterolemia and the susceptibility to atherosclerosis could be eliminated by switching off hepatic lipoprotein production. METHODS AND RESULTS We bred Ldlr-/-Apob100/100 mice that were homozygous for a conditional allele for Mttp (the gene for microsomal triglyceride transfer protein) and the inducible Mx1-Cre transgene. In these animals, which we called "Reversa mice," the hypercholesterolemia could be reversed, without modifying the diet or initiating a hypolipidemic drug, by the transient induction of Cre expression in the liver. After Cre induction, hepatic Mttp expression was virtually eliminated (as judged by quantitative real-time PCR), hepatic lipoprotein secretion was abolished (as judged by electron microscopy), and LDLs were virtually eliminated from the plasma. Intestinal lipoprotein production was unaffected. In mice fed a chow diet, Cre induction reduced plasma cholesterol levels from 233.9+/-46.0 to 37.2+/-6.5 mg/dL. In mice fed a high-fat diet, cholesterol levels fell from 525.7+/-32.2 to 100.6+/-14.3 mg/dL. The elimination of hepatic lipoprotein production completely prevented both the development of atherosclerosis and the changes in gene expression that accompany atherogenesis. CONCLUSIONS We developed mice in which hypercholesterolemia can be reversed with a genetic switch. These mice will be useful for understanding gene-expression changes that accompany the reversal of hypercholesterolemia and atherosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice.

Type 2 diabetes is associated with accelerated atherogenesis, which may result from a combination of factors, including dyslipidemia characterized by increased VLDL secretion, and insulin resistance. To assess the hypothesis that both hepatic and peripheral insulin resistance contribute to atherogenesis, we crossed mice deficient for the LDL receptor (Ldlr-/- mice) with mice that express low le...

متن کامل

Interruption of the Tnfrsf4/Tnfsf4 (OX40/OX40L) pathway attenuates atherogenesis in low-density lipoprotein receptor-deficient mice.

OBJECTIVE Atherosclerosis is a chronic (auto-)inflammatory disease and T cell activation is an important factor in this process. Tnfrsf4 (OX40) and Tnfsf4 (OX40 ligand) are members of the tumor necrosis factor (TNF) and TNF receptor family and OX40/OX40L mediated signaling is important in co-activation of T cells and facilitates B-T cell interaction. In this study we assessed the role of the OX...

متن کامل

A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice.

KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL triglyceride (TG) levels through the inhibition of lipoprotein lipase (LPL) activity. In this study...

متن کامل

Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis.

Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulator...

متن کامل

Plasma phospholipid transfer activity is essential for increased atherogenesis in PLTP transgenic mice: a mutation-inactivation study.

Plasma phospholipid transfer protein (PLTP) interacts with HDL particles and facilitates the transfer of phospholipids from triglyceride (TG)-rich lipoproteins to HDL. Overexpressing human PLTP in mice increases the susceptibility to atherosclerosis. In human plasma, high-active and low-active forms of PLTP exist. To elucidate the contribution of phospholipid transfer activity to changes in lip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 107 9  شماره 

صفحات  -

تاریخ انتشار 2003