Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive.

نویسندگان

  • Rerngchai Arayanarakool
  • Séverine Le Gac
  • Albert van den Berg
چکیده

In the fields of MicroElectroMechanical Systems (MEMS) and Lab On a Chip (LOC), a device is often fabricated using diverse substrates which are processed separately and finally assembled together using a bonding process to yield the final device. Here we describe and demonstrate a novel straightforward, rapid and low-temperature bonding technique for the assembly of complete microfluidic devices, at the chip level, by employing an intermediate layer of gluing material. This technique is applicable to a great variety of materials (e.g., glass, SU-8, parylene, UV-curable adhesive) as demonstrated here when using NOA 81 as gluing material. Bonding is firstly characterized in terms of homogeneity and thickness of the gluing layer. Following this, we verified the resistance of the adhesive layer to various organic solvents, acids, bases and conventional buffers. Finally, the assembled devices are successfully utilized for fluidic experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic Devices Made of Uv-curable Glue (noa81) for Fluorescence Detection Based Applications

The UV-curable adhesive NOA81 (Norland Optical Adhesive) is a promising liquid photopolymer for low-cost microfluidic chip production. Different fabrication methods for NOA81 are suggested [1,2]. However, optical characterization for fluorescent based detection systems is missing. We present a comparison of fluorescent emission spectra of various NOA types as well as the time evolution of the s...

متن کامل

Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV) curable adhesive. Parylene was directly deposited onto a small volume (1 μL) of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film...

متن کامل

A simple bonding process of SU-8 to glass to seal a microfluidic device

This paper describes a simple process of adhesive bonding between a glass lid and a SU-8 microfluidic device. The bonding is made by applying pressure, between 1.24 MPa – 3.72 MPa, and heat above the SU-8 glass transition temperature (Tg). The advantages of this process are low cost, simplicity and no need of extra adhesive material, which could block microchannels and inlets. The SU-8 microcha...

متن کامل

PMMA Solution Assisted Room Temperature Bonding for PMMA–PC Hybrid Devices

Recently, thermoplastic polymers have become popular materials for microfluidic chips due to their easy fabrication and low cost. A polymer based microfluidic device can be formed in various fabrication techniques such as laser machining, injection molding, and hot embossing. A new bonding process presented in this paper uses a 2.5% (w/w) polymethyl methacrylate (PMMA) solution as an adhesive l...

متن کامل

A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer.

Electrowetting (EW) is widely used in digital microfluidics for the manipulation of drops sandwiched between two parallel plates. In contrast, demonstrations of closed microfluidic channels enhanced with EW functionality are scarce. Here, we report a simple, low-cost method to construct such microchannels enclosed between two glass plates, each of which comprises electrodes and insulating layer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 10 16  شماره 

صفحات  -

تاریخ انتشار 2010