Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism.
نویسندگان
چکیده
To assess the influence of the environment on fruit metabolism, tomato (Solanum lycopersicum 'Moneymaker') plants were grown under contrasting conditions (optimal for commercial, water limited, or shaded production) and locations. Samples were harvested at nine stages of development, and 36 enzyme activities of central metabolism were measured as well as protein, starch, and major metabolites, such as hexoses, sucrose, organic acids, and amino acids. The most remarkable result was the high reproducibility of enzyme activities throughout development, irrespective of conditions or location. Hierarchical clustering of enzyme activities also revealed tight relationships between metabolic pathways and phases of development. Thus, cell division was characterized by high activities of fructokinase, glucokinase, pyruvate kinase, and tricarboxylic acid cycle enzymes, indicating ATP production as a priority, whereas cell expansion was characterized by enzymes involved in the lower part of glycolysis, suggesting a metabolic reprogramming to anaplerosis. As expected, enzymes involved in the accumulation of sugars, citrate, and glutamate were strongly increased during ripening. However, a group of enzymes involved in ATP production, which is probably fueled by starch degradation, was also increased. Metabolites levels seemed more sensitive than enzymes to the environment, although such differences tended to decrease at ripening. The integration of enzyme and metabolite data obtained under contrasting growth conditions using principal component analysis suggests that, with the exceptions of alanine amino transferase and glutamate and malate dehydrogenase and malate, there are no links between single enzyme activities and metabolite time courses or levels.
منابع مشابه
Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism1[W][OPEN]
Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F–33883 Villenave d’Ornon, France (B.Bi., C.B., B.Be., S.C., D.P., G.M., S.B., P.B., Y.G.); University of Bordeaux, Département Sciences de la Vie et de la Santé, F–33076 Bordeaux cedex, France (B.Bi., C.B., B.Be., S.C., D.P., G.M., S.B., P.B., J.-P.M., Y.G.); Plateforme Métabolome Bord...
متن کاملAn Antisense Pectin Methylesterase Gene Alters Pectin Chemistry and Soluble Solids in Tomato Fruit.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA sho...
متن کاملImpact of postharvest prohexadione calcium treatment on PAL activity in tomato fruit in response to chilling stress. Norali Ghiasi 1* and Farhang Razavi 2
Freshly harvested tomato fruit (Solanum lycopersicum) were pre-treated with 0, 50, and 100 µM prohexadione-calcium (Pro-Ca) and then stored at 1 °C for 21 days to investigate the effect of Pro-Ca treatment on electrolyte leakage (EL), malondialdehyde (MDA), proline and total phenols contents, and activity of phenylalanine ammonia-lyase (PAL) in relation to chilling injury (CI).Treatment with Pr...
متن کاملTomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma
Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in fruits, are central for improving tomato fruit quality (e.g. flavour and aroma) and could aid in elucidate pathways of specialized metabolism. To promote the production of ...
متن کاملRegulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance.
BACKGROUND AND AIMS The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content. METHODS Cherry tomato plants were grown in a glasshouse. The control ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 164 3 شماره
صفحات -
تاریخ انتشار 2014