A Uniform Lower Error Bound for Half-Space Learning

نویسندگان

  • Andreas Maurer
  • Massimiliano Pontil
چکیده

We give a lower bound for the error of any unitarily invariant algorithm learning half-spaces against the uniform or related distributions on the unit sphere. The bound is uniform in the choice of the target half-space and has an exponentially decaying deviation probability in the sample. The technique of proof is related to a proof of the Johnson Lindenstrauss Lemma. We argue that, unlike previous lower bounds, our result is well suited to evaluate the benefits of multi-task or transfer learning, or other cases where an expense in the acquisition of domain knowledge has to be justified.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Static Deformation of a Uniform Thermoelastic Half –Space Due to Seismic Sources and Heat Source

This paper investigates the quasi-static plane deformation of an isotropic thermoelastic half-space due to buried seismic sources and heat source. Governing equations of thermo-elasticity are solved to obtain solutions for seismic sources in a thermoelastic half-space. The general solutions are acquired with the aid of Laplace and Fourier transforms and with the use of boundary conditions. The ...

متن کامل

Agnostically Learning Halfspaces with Margin Errors

We describe and analyze a new algorithm for agnostically learning half-spaces with respect to the margin error rate. Roughly speaking, this corre-sponds to the worst-case error rate after each point is perturbed by a noisevector of length at most μ. Margin based analysis is widely used in learningtheory and is considered the most successful theoretical explanation for thesta...

متن کامل

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

A Quantum Time-Space Lower Bound for the Counting Hierarchy

We obtain the first nontrivial time-space lower bound for quantum algorithms solving problems related to satisfiability. Our bound applies to MajSAT and MajMajSAT, which are complete problems for the first and second levels of the counting hierarchy, respectively. We prove that for every real d and every positive real ǫ there exists a real c > 1 such that either: • MajMajSAT does not have a qua...

متن کامل

Designing a Robust Control Scheme for Robotic Systems with an Adaptive Observer

This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008