Tracking Target Signal Strengths on a Grid using Sparsity

نویسندگان

  • Shahrokh Farahmand
  • Georgios B. Giannakis
  • Geert Leus
  • Zhi Tian
چکیده

Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to linear state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through 1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root-mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts. Comparison with the recently developed additive likelihood moment filter reveals the better performance of the proposed TSSG tracker.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Tracking Based on Virtual Grid in Wireless Sensor Networks

One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...

متن کامل

A New Method for Ground Moving Targets Tracking Using Radar Based on Compressed Sensing

In this paper, we propose a Compressed Sensing (CS) based method under the unknown sparse degree to track ground moving targets using Pulse-Doppler (PD) radar. We use the sparsity of delay-Doppler plane in the process of disposing PD radar echo to set up a sparse signal model in each pulse interval. At the state prediction stage, we can get the predicted values of target states by dynamic equat...

متن کامل

Improving the Tracking Error Signal Extraction in IR Seeker with Stationary Wagon Wheel Reticle over all Field of View

The accuracy of target position detection in IR seeker depends on the accuracy of tracking error signal (TES) extraction from seeker Field of View (FOV). The type of reticle inside the seeker determines the output modulation signal that carries the TES. In this paper, the stationary wagon wheel reticle is used, which makes the type of the output signal as FM modulation in the linear region of F...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

A low-complexity multi-target tracking algorithm in urban environments using sparse modeling

We propose a novel sparsity-based algorithm for multiple-target tracking in a timevarying multipath environment. We develop a sparse measurement model for the received signal, by considering a finite dimensional representation of the time-varying system function which characterizes the transmission channel. The measurement model allows us to exploit the joint delay–Doppler diversity offered by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014