Approximation of large-scale dynamical systems: An overview
نویسنده
چکیده
In this paper we review the state of affairs in the area of approximation of large-scale systems. We distinguish among three basic categories, namely the SVD-based, the Krylov-based and the SVD-Krylov-based approximation methods. The first two were developed independently of each other and have distinct sets of attributes and drawbacks. The third approach seeks to combine the best attributes of the first two.
منابع مشابه
Approximation of large-scale dynamical systems: An overview and some new results
In many applications one is faced with the task of simulating or controlling complex dynamical systems. Such applications include weather prediction, air quality management, VLSI chip design, molecular dynamics, micro-electro-mechanical systems (MEMS), etc. In all these cases complexity manifests itself as the number of first order differential or differential-algebraic equations which arise. F...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملOrder Reduction of (Truly) Large-Scale Linear Dynamical Systems
In recent years, Krylov subspace methods have become widely-used tools for order reduction of large-scale linear dynamical systems; see [1] for a recent survey of such reduction techniques. Despite all the progress in this area, the development of algorithms that are applicable to truly large-scale systems and at the same time preserve the key structures of the large-scale system remains a chal...
متن کاملDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملEfficient Stabilization of Large Scale Dynamical Systems
In this paper we discuss the stabilization of large scale linear time invariant dynamical systems via feedback. An overview of efficient schemes based on the Discrete Riccati Difference Equation are presented. In particular, results are given for a Newton-like approach to the problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001