Influence of the arterial input function on absolute and relative perfusion-weighted imaging penumbral flow detection: a validation with ¹⁵O-water positron emission tomography.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Perfusion-weighted imaging maps are used to identify critical hypoperfusion in acute stroke. However, quantification of perfusion may depend on the choice of the arterial input function (AIF). Using quantitative positron emission tomography we evaluated the influence of the AIF location on maps of absolute and relative perfusion-weighted imaging to detect penumbral flow (PF; <20 mL/100 g/min on positron emission tomography(CBF)) in acute stroke. METHODS In 22 patients with acute stroke the AIF was placed at 7 sites (M1, M2, M3 ipsi- and contralateral and internal carotid artery-M1 contralateral to the infarct). Comparative (15)O-water positron emission tomography and AIF-dependent perfusion-weighted imaging (cerebral blood flow, cerebral blood volume, mean transit time, and time to maximum) were performed. A receiver operating characteristic curve analysis described the threshold independent performance (area under the curve) of the perfusion-weighted maps for all 7 AIF locations and identified the best AIF-dependent absolute and relative thresholds to identify PF. These results were compared with AIF-independent time-to-peak maps. RESULTS Quantitative perfusion-weighted imaging maps of cerebral blood flow and time to maximum performed best. For PF detection, AIF placement did significantly influence absolute PF thresholds. However, AIF placement did not influence (1) the threshold independent performance; and (2) the relative PF thresholds. AIF placement in the proximal segment of the contralateral middle cerebral artery (cM1) was preferable for quantification. CONCLUSIONS AIF-based maps of cerebral blood flow and time to maximum were most accurate to detect the PF threshold. The AIF placement significantly altered absolute PF thresholds and showed best agreement with positron emission tomography for the cM1 segment. The performance of relative PF thresholds, however, was not AIF location-dependent and might be along with AIF-independent time-to-peak maps, more suitable than absolute PF thresholds in acute stroke if detailed postprocessing is not feasible.
منابع مشابه
Influence of the Arterial Input Function on Absolute and Relative Perfusion-Weighted Imaging Penumbral Flow Detection
Background and Purpose—Perfusion-weighted imaging maps are used to identify critical hypoperfusion in acute stroke. However, quantification of perfusion may depend on the choice of the arterial input function (AIF). Using quantitative positron emission tomography we evaluated the influence of the AIF location on maps of absolute and relative perfusion-weighted imaging to detect penumbral flow (...
متن کاملMRI perfusion maps in acute stroke validated with 15O-water positron emission tomography.
BACKGROUND AND PURPOSE Perfusion-weighted imaging maps are used to identify hypoperfusion in acute ischemic stroke. We evaluated maps of cerebral blood flow (CBF), cerebral blood volume, mean transit time, and time to peak (TTP) in acute stroke by comparison with positron emission tomography. METHODS Perfusion-weighted imaging and positron emission tomography were performed in 26 patients wit...
متن کاملA simple positron emission tomography-based calibration for perfusion-weighted magnetic resonance maps to optimize penumbral flow detection in acute stroke.
BACKGROUND AND PURPOSE Perfusion-weighted (PW) MRI is increasingly used to identify the tissue at risk. The adequate PW-MRI map and threshold remain controversial due to a considerable individual variation of values. By comparative positron emission tomography, we evaluated a simple MR-based and positron emission tomography-validated calibration of PW maps. METHODS PW-MRI and quantitative pos...
متن کاملMaps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography.
BACKGROUND AND PURPOSE Perfusion-weighted imaging-derived maps of time-to-maximum (Tmax) are increasingly used to identify the tissue at risk in clinical stroke studies (eg, DEFUSE and EPITHET). Using quantitative positron emission tomography (PET), we evaluated Tmax to define the penumbral flow threshold in stroke patients and compared its performance to nondeconvolved time-to-peak (TTP) maps....
متن کاملWhich time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke.
BACKGROUND AND PURPOSE In acute ischemic stroke, the hypoperfused but viable tissue is the main therapeutic target. In clinical routine, time-to-peak (TTP) maps are frequently used to estimate the hemodynamic compromise and to calculate the mismatch volume. We evaluated the accuracy of TTP maps to identify penumbral flow by comparison with positron emission tomography (PET). METHODS Magnetic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 43 2 شماره
صفحات -
تاریخ انتشار 2012