Biophysics of Microtubule End Coupling at the Kinetochore.
نویسنده
چکیده
The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.
منابع مشابه
A driving and coupling "Pac-Man" mechanism for chromosome poleward translocation in anaphase A.
During mitosis, chromatid harnesses its kinetochore translocation at the depolymerizing microtubule ends for its poleward movement in anaphase A. The force generation mechanism for such movement remains unknown. Analysis of the current experimental results shows that the bending energy release from the bound tubulin subunits alone cannot provide sufficient driving force. Additional contribution...
متن کاملMechanisms of force generation by end-on kinetochore-microtubule attachments.
Generation of motile force is one of the main functions of the eukaryotic kinetochore during cell division. In recent years, the KMN network of proteins (Ndc80 complex, Mis12 complex, and KNL-1 complex) has emerged as a highly conserved core microtubule-binding complex at the kinetochore. It plays a major role in coupling force generation to microtubule plus-end polymerization and depolymerizat...
متن کاملContributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture.
Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational di...
متن کاملKinetochores' gripping feat: conformational wave or biased diffusion?
Climbing up a cliff while the rope unravels underneath your fingers does not sound like a well-planned adventure. Yet chromosomes face a similar challenge during each cell division. Their alignment and accurate segregation depends on staying attached to the assembling and disassembling tips of microtubule fibers. This coupling is mediated by kinetochores, intricate machines that attach chromoso...
متن کاملMeiosis in Drosophila melanogaster. II. The prometaphase-I kinetochore microtubule bundle and kinetochore orientation in males
Fourteen prometaphase kinetochore microtubule bundles have been examined in electron micrographs of serial sections. The majority (54%) of the microtubules extended from the polar region towards the kinetochore but do not end in the kinetochore proper. Rather, they stop short of the kinetochore (21%), graze the kinetochore (19%), or pass through the kinetochore (9%), displaying a free end dista...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in molecular and subcellular biology
دوره 56 شماره
صفحات -
تاریخ انتشار 2017