A link between gut community metabolism and pathogenesis: molecular hydrogen-stimulated glucarate catabolism aids Salmonella virulence

نویسندگان

  • Reena Lamichhane-Khadka
  • Stéphane L. Benoit
  • Susan E. Maier
  • Robert J. Maier
چکیده

Glucarate, an oxidized product of glucose, is a major serum organic acid in humans. Still, its role as a carbon source for a pathogen colonizing hosts has not been studied. We detected high-level expression of a potential glucarate permease encoding gene gudT when Salmonella enterica serovar Typhimurium are exposed to hydrogen gas (H(2)), a gaseous by-product of gut commensal metabolism. A gudT strain of Salmonella is deficient in glucarate-dependent growth, however, it can still use other monosaccharides, such as glucose or galactose. Complementation of the gudT mutant with a plasmid harbouring gudT restored glucarate-dependent growth to wild-type (WT) levels. The gudT mutant exhibits attenuated virulence: the mean time of death for mice inoculated with WT strain was 2 days earlier than for mice inoculated with the gudT strain. At 4 days postinoculation, liver and spleen homogenates from mice inoculated with a gudT strain contained significantly fewer viable Salmonella than homogenates from animals inoculated with the parent. The parent strain grew well H(2)-dependently in a minimal medium with amino acids and glucarate provided as the sole carbon sources, whereas the gudT strain achieved approximately 30% of the parent strain's yield. Glucarate-mediated growth of a mutant strain unable to produce H(2) was stimulated by H(2) addition, presumably owing to the positive transcriptional response to H(2). Gut microbiota-produced molecular hydrogen apparently signals Salmonella to catabolize an alternative carbon source available in the host. Our results link a gut microbiome-produced diffusible metabolite to augmenting bacterial pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen-stimulated carbon acquisition and conservation in Salmonella enterica serovar Typhimurium.

Salmonella enterica serovar Typhimurium can utilize molecular hydrogen for growth and amino acid transport during anaerobic growth. Via microarray we identified H(2) gas-affected gene expression changes in Salmonella. The addition of H(2) caused altered expression of 597 genes, of which 176 genes were upregulated and 421 were downregulated. The significantly H(2)-upregulated genes include those...

متن کامل

Peptide utilizing carbon starvation gene yjiY is required for flagella mediated infection caused by Salmonella.

Peptide metabolism forms an important part of the metabolic network of Salmonella and to acquire these peptides the pathogen possesses a number of peptide transporters. While various peptide transporters known in Salmonella are well studied, very little is known about the carbon starvation (cst) genes, cstA and yjiY, which are also predicted to be involved in peptide metabolism. We investigated...

متن کامل

Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem.

The intestinal microbiota features intricate metabolic interactions involving the breakdown and reuse of host- and diet-derived nutrients. The competition for these resources can limit pathogen growth. Nevertheless, some enteropathogenic bacteria can invade this niche through mechanisms that remain largely unclear. Using a mouse model for Salmonella diarrhea and a transposon mutant screen, we d...

متن کامل

The Pyromaniac Inside You: Salmonella Metabolism in the Host Gut.

A metabolically diverse microbial community occupies all available nutrient-niches in the lumen of the mammalian intestine, making it difficult for pathogens to establish themselves in this highly competitive environment. Salmonella serovars sidestep the competition by using their virulence factors to coerce the host into creating a novel nutrient-niche. Inflammation-derived nutrients available...

متن کامل

Interaction between Intestinal Microbiota and Serotonin Metabolism

Gut microbiota regulates the production of signaling molecules, such as serotonin or 5-Hydroxytryptamine: 5-HT in the host. Serotonin is a biogenic amine that acts as a neurotransmitter in the gut and brain. There is a perfect interaction between human gastrointestinal microbiota and the serotonin system. The gut microbiota plays an important role in the serotonin signaling pathways through the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013