Isomerization of n-Butane and of n-Pentane in the Presence of Sulfated Zirconia: Formation of Surface Deposits Investigated by In Situ UV–vis Diffuse Reflectance Spectroscopy

نویسندگان

  • Rafat Ahmad
  • Jörg Melsheimer
  • Friederike C. Jentoft
  • Robert Schlögl
چکیده

Catalytic performance and formation of carbonaceous deposits were studied simultaneously during alkane isomerization over sulfated zirconia in a fixed bed flow reactor with an optical window for in situ UV–vis diffuse reflectance spectroscopy. The reactions of n-butane (5 kPa) at 358 and 378 K and of n-pentane (0.25 kPa) at 298 and 308 K passed within 5 h or less through an induction period, a conversion maximum, and a period of deactivation; a steady activity of 41 and 47 μmol g h (isobutane formation) and ≈2.5 μmol g h (isopentane, both temperatures) remained. UV–vis spectra indicate the formation of unsaturated surface deposits; the band positions at 310 nm (n-butane reaction) and 330 nm (npentane) are within the range of monoenic allylic cations. More highly conjugated allylic cations (bands at 370 and 430 nm) became evident during n-butane reaction at 523 K. The chronology of events suggests that the surface deposits are (i) a result only of the bimolecular and not the monomolecular reaction mechanism, and (ii) are formed in a competitive reaction to the alkane products.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ Spectroscopic Investigation of Activation, Start-Up and Deactivation of Promoted Sulfated Zirconia Catalysts

Sulfated zirconia (SZ), unpromoted and promoted with 0.5–2.0 wt% Mn or Fe, was investigated by in situ IR and UV–vis spectroscopy during activation at 723–773 K and interaction with n-butane at 298–323 K. During start-up of the catalysts, the isomerization rate increases with the amount of water that is being formed, consistent with an activation of n-butane via oxidative dehydrogenation. Sulfa...

متن کامل

Effect of Mn and Fe on the reactivity of sulfated zirconia toward H2 and n-butane: a diffuse reflectance IR spectroscopic investigation.

Sulfated zirconia (SZ) and sulfated zirconia promoted with 2 wt % manganese (MnSZ) or iron (FeSZ), all active in n-butane isomerization, were investigated using diffuse reflectance Fourier transform IR spectroscopy (DRIFTS). By adsorption of H(2) at 77 K or of n-butane at room temperature, it was found that the promoters neither enhance the Lewis nor the Brønsted acid strength. SZ and promoted ...

متن کامل

n-Butane Isomerization Catalyzed by Sulfated Zirconia Nanocrystals Supported on Silica or γ-Alumina

Supported sulfated zirconia catalysts with zirconia contents of 10, 20 and 50 wt% were prepared by impregnation of SiO2 and γ-Al2O3 supports with H2SO4/Zr(SO4)2 solutions followed by calcination at 923 K. The catalysts were characterized by X-ray diffraction, extended X-ray absorption fine structure measurements, thermal analysis, UV–vis spectroscopy, and electron microscopy. Tetragonal zirconi...

متن کامل

Hydroisomerization of n-Pentane over Pt/Mordenite Catalyst: Effect of Feed Composition and Process Conditions

The hydroisomerization of pure n-pentane over H-mordenite supported Pt-catalyst was investigated in a fixed bed reactor by changing reaction parameters such as temperature, pressure, and WHSV, as well as the H2/HC ratio. The maximum yield of isopentane over Pt/mordenite catalyst was achieved at 220 °C and a relatively low reaction pressure. To address the effect of feed composition on the catal...

متن کامل

Anatase TiO2 and mixed M-Anatase TiO2 (M = CeO2 or ZrO2) nano powder: Synthesis and characterization

Pure Anatase Titania (TiO2), mixed 1.0 wt.% Cerium-Anatase Titania (1.0 wt.%CeO2-TiO2), and mixed 1.0 wt.% Zirconia-Anatase Titania (1.0 wt.%ZrO2-TiO2) nano powders were synthesized by co-precipitation method and characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, UV-Vis diffuse reflectance spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003