A multigrid solver to the Helmholtz equation with a point source based on travel time and amplitude

نویسندگان

  • Eran Treister
  • Eldad Haber
چکیده

The Helmholtz equation arises when modeling wave propagation in the frequency domain. The equation is discretized as an indefinite linear system, which is difficult to solve at high wave numbers. In many applications, the solution of the Helmholtz equation is required for a point source. In this case, it is possible to reformulate the equation as two separate equations: one for the travel time of the wave and one for its amplitude. The travel time is obtained by a solution of the factored eikonal equation, and the amplitude is obtained by solving a complex-valued advection-diffusion-reaction (ADR) equation. The reformulated equation is equivalent to the original Helmholtz equation, and the differences between the numerical solutions of these equations arise only from discretization errors. We develop an efficient multigrid solver for obtaining the amplitude given the travel time, which can be efficiently computed. This approach is advantageous because the amplitude is typically smooth in this case, and hence, more suitable for multigrid solvers than the standard Helmholtz discretization. We demonstrate that our second order ADR discretization is more accurate than the standard second order discretization at high wave numbers, as long as there are no reflections or caustics. Moreover, we show that using our approach, the problem can be solved more efficiently than using the common shifted Laplacian multigrid approach. Copyright c © 0000 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Multigrid Calculation of the Far Field Map for Helmholtz and Schrödinger Equations

In this paper we present a new highly efficient calculation method for the far field amplitude pattern that arises from scattering problems governed by the d-dimensional Helmholtz equation and, by extension, Schrödinger’s equation. The new technique is based upon a reformulation of the classical real-valued Green’s function integral for the far field amplitude to an equivalent integral over a c...

متن کامل

GMRES-based multigrid for the complex scaled preconditoner for the indefinite Helmholtz equation

Multigrid preconditioners and solvers for the indefinite Helmholtz equation suffer from non-stability of the stationary smoothers due to the indefinite spectrum of the operator. In this paper we explore GMRES as a replacement for the stationary smoothers of the standard multigrid method. This results in a robust and efficient solver for a complex shifted or stretched Helmholtz problem that can ...

متن کامل

Cubic spline Numerov type approach for solution of Helmholtz equation

We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...

متن کامل

A multigrid-based shifted Laplacian preconditioner for a fourth-order Helmholtz discretization

In this paper, an iterative solution method for a fourth-order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in [10], where multigrid was employed as a preconditioner for a Krylov subspace iterative method. This multigrid preconditioner is based on the solution of a second Helmholtz operator with a complexvalued shift. In partic...

متن کامل

On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning

This paper studies and analyzes a preconditioned Krylov solver for Helmholtz problems that are formulated with absorbing boundary layers based on complex coordinate stretching. The preconditioner problem is a Helmholtz problem where not only the coordinates in the absorbing layer have an imaginary part, but also the coordinates in the interior region. This results into a preconditioner problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.06091  شماره 

صفحات  -

تاریخ انتشار 2017