Binding of E-MAP-115 to microtubules is regulated by cell cycle- dependent phosphorylation
نویسندگان
چکیده
Expression levels of E-MAP-115, a microtubule-associated protein that stabilizes microtubules, increase with epithelial cell polarization and differentiation (Masson and Kreis, 1993). Although polarizing cells contain significant amounts of this protein, they can still divide and thus all stabilized microtubules must disassemble at the onset of mitosis to allow formation of the dynamic mitotic spindle. We show here that binding of E-MAP-115 to microtubules is regulated by phosphorylation during the cell cycle. Immunolabeling of HeLa cells for E-MAP-115 indicates that the protein is absent from microtubules during early prophase and progressively reassociates with microtubules after late prophase. A fraction of E-MAP-115 from HeLa cells released from a block at the G1/S boundary runs with higher apparent molecular weight on SDS-PAGE, with a peak correlating with the maximal number of cells in early stages of mitosis. E-MAP-115 from nocodazole-arrested mitotic cells, which can be obtained in larger amounts, displays identical modifications and was used for further biochemical characterization. The level of incorporation of 32P into mitotic E-MAP-115 is about 15-fold higher than into the interphase protein. Specific threonine phosphorylation occurs in mitosis, and the amount of phosphate associated with serine also increases. Hyperphosphorylated E-MAP-115 from mitotic cells cannot bind stably to microtubules in vitro. These results suggest that phosphorylation of E-MAP-115 is a prerequisite for increasing the dynamic properties of the interphase microtubules which leads to the assembly of the mitotic spindle at the onset of mitosis. Microtubule-associated proteins are thus most likely key targets for kinases which control changes in microtubule dynamic properties at the G2- to M-phase transition.
منابع مشابه
Theoretical Study of Flavopiridol Binded to Transition Metals
More recently medical chemistry research has been focused on proteins that drive and controlcell cycle progression. Among them, the cyclin dependent kinases (cdk’s) are a group ofserine/threonine kinases, which rule the transition between successive stages of the cell cycle. Theactivity of cdk’s is regulated by multiple mechanisms, including binding to cyclins, which is a broadclass of positive...
متن کاملIdentification and molecular characterization of E-MAP-115, a novel microtubule-associated protein predominantly expressed in epithelial cells
A novel microtubule-associated protein (MAP) of M(r) 115,000 has been identified by screening of a HeLa cell cDNA expression library with an anti-serum raised against microtubule-binding proteins from HeLa cells. Monoclonal and affinity-purified polyclonal antibodies were generated for the further characterization of this MAP. It is different from the microtubule-binding proteins of similar mol...
متن کاملAurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation.
Aurora B regulates chromosome segregation and cytokinesis and is the first protein to be implicated as a regulator of bipolar attachment of spindle microtubules to kinetochores. Evidence from several systems suggests that Aurora B is physically associated with inner centromere protein (INCENP) in mitosis and has genetic interactions with Survivin. It is unclear whether the Aurora B and INCENP i...
متن کاملSpc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body.
In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the gamma-tubulin complex containing the gamma-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubul...
متن کاملDynamic instability of microtubules is regulated by force
Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 131 شماره
صفحات -
تاریخ انتشار 1995