Exploiting Structure and Semantics for Expressive Text Kernels
نویسندگان
چکیده
Several problems in text categorization are too hard to be solved by standard bag-of-words representations. Work in kernel-based learning has approached this problem by (i) considering information about the syntactic structure of the input or by (ii) incorporating knowledge about the semantic similarity of term features. In this paper, we propose a generalized framework consisting of a family of kernels that jointly incorporates syntax and semantics. We show that both components can be flexibly adapted and tuned towards the particular application domain. We demonstrate the power of this approach in a series of experiments on two diverse datasets, each of which presents a non-standard text categorization problem: one for the classification of natural language questions from a TREC question answering dataset and the other for the automated assignment of ICT9 categories to short textual fragments of medical diagnoses.
منابع مشابه
Towards Syntax-aware Compositional Distributional Semantic Models
Compositional Distributional Semantics Models (CDSMs) are traditionally seen as an entire different world with respect to Tree Kernels (TKs). In this paper, we show that under a suitable regime these two approaches can be regarded as the same and, thus, structural information and distributional semantics can successfully cooperate in CSDMs for NLP tasks. Leveraging on distributed trees, we pres...
متن کاملSemantic Matching using Kernel Methods
Semantic matching (SM) for textual information can be informally defined as the task of effectively modeling text matching using representations more complex than those based on simple and independent set of surface forms of words or stems (typically indicated as bag-of-words). In this perspective, matching named entities (NEs) implies that the associated model can both overcomes mismatch betwe...
متن کاملDeep Kernel Learning
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the nonparametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel represe...
متن کاملIntegrating Gaussian Processes with Word-Sequence Kernels for Bayesian Text Categorization
We address the problem of multi-labelled text classification using word-sequence kernels. However, rather than applying them with Support Vector Machine as in previous work, we chose a classifier based on Gaussian Processes. This is a probabilistic non-parametric method that retains a sound probabilistic semantics while overcoming the limitations of parametric methods. We present the empirical ...
متن کاملHyper-Document Structure: Maintaining Discourse Coherence in Non-Linear Documents
The passage from linear text to hypertext poses the challenge of expressing discourse coherence in non-linear text, where linguistic discourse markers no longer work. While hypertext introduces new possibilities for discourse organisation, it also requires the use of new devices which can support the expression of coherence by exploiting the technical characteristics and expressive richness of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007