Differentially Private Approximation Algorithms
نویسندگان
چکیده
Consider the following problem: given a metric space, some of whose points are “clients”, open a set of at most k facilities to minimize the average distance from the clients to these facilities. This is just the well-studied k-median problem, for which many approximation algorithms and hardness results are known. Note that the objective function encourages opening facilities in areas where there are many clients, and given a solution, it is often possible to get a good idea of where the clients are located. However, this poses the following quandary: what if the identity of the clients is sensitive information that we would like to keep private? Is it even possible to design good algorithms for this problem that preserve the privacy of the clients? In this paper, we initiate a systematic study of algorithms for discrete optimization problems in the framework of differential privacy (which formalizes the idea of protecting the privacy of individual input elements). We show that many such problems indeed have good approximation algorithms that preserve differential privacy; this is even in cases where it is impossible to preserve cryptographic definitions of privacy while computing any non-trivial approximation to even the value of an optimal solution, let alone the entire solution. Apart from the k-median problem, we consider the problems of vertex and set cover, min-cut, k-median, facility location, and Steiner tree, and give approximation algorithms and lower bounds for these problems. We also consider the recently introduced submodular maximization problem, “Combinatorial Public Projects” (CPP), shown by Papadimitriou et al. [PSS08] to be inapproximable to subpolynomial multiplicative factors by any efficient and truthful algorithm. We give a differentially private (and hence approximately truthful) algorithm that achieves a logarithmic additive approximation.
منابع مشابه
Convergence Rates for Differentially Private Statistical Estimation
Differential privacy is a cryptographically-motivated definition of privacy which has gained significant attention over the past few years. Differentially private solutions enforce privacy by adding random noise to a function computed over the data, and the challenge in designing such algorithms is to control the added noise in order to optimize the privacy-accuracy-sample size tradeoff. This w...
متن کاملOptimal Lower Bounds for Universal and Differentially Private Steiner Tree and TSP
Given a metric space on n points, an α-approximate universal algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset X of vertices containing the root, the expected cost of the induced subtree is within an α factor of the optimal Steiner tree cost for X . An α-approximate differentially private algorithm for the Steiner tree problem take...
متن کاملOptimal Lower Bounds for Universal and Differentially Private Steiner Trees and TSPs
Given a metric space on n points, an α-approximate universal algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset X of vertices containing the root, the expected cost of the induced subtree is within an α factor of the optimal Steiner tree cost for X. An α-approximate differentially private algorithm for the Steiner tree problem takes...
متن کامل20 th International Symposium on Mathematical Programming 121
■ FA01 Marriott Chicago A Approximation Algorithms III Cluster: Approximation Algorithms Invited Session Chair: Cliff Stein, Columbia University, 326 S W Mudd Building, 500 W. 120th Street, New York, NY, 10027, [email protected] 1 Differentially Private Approximation Algorithms Kunal Talwar, Microsoft Research, Silicon Valley Campus, 1065 La Avenida, Mountain View, CA, 94043, United State...
متن کاملThe Complexity of Computing the Optimal Composition of Differential Privacy
In the study of differential privacy, composition theorems (starting with the original paper of Dwork, McSherry, Nissim, and Smith (TCC’06)) bound the degradation of privacy when composing several differentially private algorithms. Kairouz, Oh, and Viswanath (ICML’15) showed how to compute the optimal bound for composing k arbitrary ( , δ)differentially private algorithms. We characterize the o...
متن کاملPrivate Approximations of the 2nd-Moment Matrix Using Existing Techniques in Linear Regression
We introduce three differentially-private algorithms that approximates the 2nd-moment matrix of the data. These algorithm, which in contrast to existing algorithms output positive-definite matrices, correspond to existing techniques in linear regression literature. Specifically, we discuss the following three techniques. (i) For Ridge Regression, we propose setting the regularization coefficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0903.4510 شماره
صفحات -
تاریخ انتشار 2009