Multivariate Polynomial Interpolation and the Lifting Scheme with an Application to Scattered Data Approximation
نویسنده
چکیده
This thesis deals with generalized inverses, multivariate polynomial interpolation and approximation of scattered data. Moreover, it covers the lifting scheme, which basically links the aforementioned topics. For instance, determining filters for the lifting scheme is connected to multivariate polynomial interpolation. More precisely, sets of interpolation sites are required that can be interpolated by a unique polynomial of a certain degree. In this thesis a new class of such sets is introduced and elements from this class are used to construct new and computationally more efficient filters for the lifting scheme. Furthermore, a method to approximate multidimensional scattered data is introduced which is based on the lifting scheme. A major task in this method is to solve an ordinary linear least squares problem which possesses a special structure. Exploiting this structure yields better approximations and therefore this particular least squares problem is analyzed in detail. This leads to a characterization of special generalized inverses with partially prescribed image spaces.
منابع مشابه
Scattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملUsing Sparse Interpolation in Hensel Lifting
The standard approach to factor a multivariate polynomial in Z[x1, x2, . . . , xn] is to factor a univariate image in Z[x1] then lift the factors of the image one variable at a time using Hensel lifting to recover the multivariate factors. At each step one must solve a multivariate polynomial Diophantine equation. For polynomials in many variables with many terms we find that solving these mult...
متن کاملOn the Approximation Order and Numerical Stability of Local Lagrange Interpolation by Polyharmonic Splines
This paper proves convergence rates for local scattered data interpolation by polyharmonic splines. To this end, it is shown that the Lagrange basis functions of polyharmonic spline interpolation are invariant under uniform scalings. Consequences of this important result for the numerical stability of the local interpolation scheme are discussed. A stable algorithm for the evaluation of polyhar...
متن کاملComputational Aspects of Approximation to Scattered Data by Using 'Shifted' Thin-Plate Splines
A new multivariate approximation scheme to scattered data on arbitrary bounded domains in Rd is developed. The approximant is selected from a space spanned (essentially) by corresponding translates of the ‘shifted’ thin-plate spline (‘essentially,’ since the space is augmented by certain functions in order to eliminate boundary effects). This scheme applies to noisy data as well as to noiseless...
متن کاملAlgebraic and Numerical Algorithms
Arithmetic manipulation with matrices and polynomials is a common subject for algebraic (or symbolic) and numerical computing. Typical computational problems in these areas include the solution of a polynomial equation and linear and polynomial systems of equations, univariate and multivariate polynomial evaluation, interpolation, factorization and decompositions, rational interpolation, comput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013