Decentralized Frank-Wolfe Algorithm for Convex and Nonconvex Problems
نویسندگان
چکیده
Decentralized optimization algorithms have received much attention due to the recent advances in network information processing. However, conventional decentralized algorithms based on projected gradient descent are incapable of handling high dimensional constrained problems, as the projection step becomes computationally prohibitive to compute. To address this problem, this paper adopts a projection-free optimization approach, a.k.a. the Frank-Wolfe (FW) or conditional gradient algorithm. We first develop a decentralized FW (DeFW) algorithm from the classical FW algorithm. The convergence of the proposed algorithm is studied by viewing the decentralized algorithm as an inexact FW algorithm. Using a diminishing step size rule and letting t be the iteration number, we show that the DeFW algorithm’s convergence rate is O(1/t) for convex objectives; is O(1/t) for strongly convex objectives with the optimal solution in the interior of the constraint set; and is O(1/ √ t) towards a stationary point for smooth but non-convex objectives. We then show that a consensus-based DeFW algorithm meets the above guarantees with two communication rounds per iteration. Furthermore, we demonstrate the advantages of the proposed DeFW algorithm on low-complexity robust matrix completion and communication efficient sparse learning. Numerical results on synthetic and real data are presented to support our findings.
منابع مشابه
Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملFrank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint
We propose a Frank-Wolfe (FW) solver to optimize the symmetric nonnegative matrix factorization problem under a simplicial constraint. Compared with existing solutions, this algorithm is extremely simple to implement, and has almost no hyperparameters to be tuned. Building on the recent advances of FW algorithms in nonconvex optimization, we prove an O(1/ε) convergence rate to stationary points...
متن کاملEfficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity
The use of convex regularizers allow for easy optimization, though they often produce biased estimation and inferior prediction performance. Recently, nonconvex regularizers have attracted a lot of attention and outperformed convex ones. However, the resultant optimization problem is much harder. In this paper, for a large class of nonconvex regularizers, we propose to move the nonconvexity fro...
متن کاملSketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage
This paper concerns a fundamental class of convex matrix optimization problems. It presents the first algorithm that uses optimal storage and provably computes a lowrank approximation of a solution. In particular, when all solutions have low rank, the algorithm converges to a solution. This algorithm, SketchyCGM, modifies a standard convex optimization scheme, the conditional gradient method, t...
متن کاملCongestion Pricing of Road Networks with Users Having Different Time Values
We study congestion pricing of road networks with users differing only in their time values. In particular, we analyze the marginal social cost (MSC) pricing, a tolling scheme that charges each user a penalty corresponding to the value of the delays inflicted on other users, as well as its implementation through fixed tolls. We show that the variational inequalities characterizing the correspon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Automat. Contr.
دوره 62 شماره
صفحات -
تاریخ انتشار 2017