Sparse regularization for fiber ODF reconstruction: From the suboptimality of l2 and l1 priors to l0

نویسندگان

  • Alessandro Daducci
  • Dimitri Van De Ville
  • Jean-Philippe Thiran
  • Yves Wiaux
چکیده

Diffusion MRI is a well established imaging modality providing a powerful way to probe the structure of the white matter non-invasively. Despite its potential, the intrinsic long scan times of these sequences have hampered their use in clinical practice. For this reason, a large variety of methods have been recently proposed to shorten the acquisition times. Among them, spherical deconvolution approaches have gained a lot of interest for their ability to reliably recover the intra-voxel fiber configuration with a relatively small number of data samples. To overcome the intrinsic instabilities of deconvolution, these methods use regularization schemes generally based on the assumption that the fiber orientation distribution (FOD) to be recovered in each voxel is sparse. The well known Constrained Spherical Deconvolution (CSD) approach resorts to Tikhonov regularization, based on an ℓ(2)-norm prior, which promotes a weak version of sparsity. Also, in the last few years compressed sensing has been advocated to further accelerate the acquisitions and ℓ(1)-norm minimization is generally employed as a means to promote sparsity in the recovered FODs. In this paper, we provide evidence that the use of an ℓ(1)-norm prior to regularize this class of problems is somewhat inconsistent with the fact that the fiber compartments all sum up to unity. To overcome this ℓ(1) inconsistency while simultaneously exploiting sparsity more optimally than through an ℓ(2) prior, we reformulate the reconstruction problem as a constrained formulation between a data term and a sparsity prior consisting in an explicit bound on the ℓ(0)norm of the FOD, i.e. on the number of fibers. The method has been tested both on synthetic and real data. Experimental results show that the proposed ℓ(0) formulation significantly reduces modeling errors compared to the state-of-the-art ℓ(2) and ℓ(1) regularization approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However...

متن کامل

Sparse-view computed tomography image reconstruction via a combination of L(1) and SL(0) regularization.

Low-dose computed tomography reconstruction is an important issue in the medical imaging domain. Sparse-view has been widely studied as a potential strategy. Compressed sensing (CS) method has shown great potential to reconstruct high-quality CT images from sparse-view projection data. Nonetheless, low-contrast structures tend to be blurred by the total variation (TV, L1-norm of the gradient im...

متن کامل

Arbitrary Norm Support Vector Machines

Support vector machines (SVM) are state-of-the-art classifiers. Typically L2-norm or L1-norm is adopted as a regularization term in SVMs, while other norm-based SVMs, for example, the L0-norm SVM or even the L(infinity)-norm SVM, are rarely seen in the literature. The major reason is that L0-norm describes a discontinuous and nonconvex term, leading to a combinatorially NP-hard optimization pro...

متن کامل

Fast and Robust Reconstruction for Fluorescence Molecular Tomography via L1-2 Regularization

Sparse reconstruction inspired by compressed sensing has attracted considerable attention in fluorescence molecular tomography (FMT). However, the columns of system matrix used for FMT reconstruction tend to be highly coherent, which means L1 minimization may not produce the sparsest solution. In this paper, we propose a novel reconstruction method by minimization of the difference of L1 and L2...

متن کامل

Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares

BACKGROUND In order to reduce the radiation dose of CT (computed tomography), compressed sensing theory has been a hot topic since it provides the possibility of a high quality recovery from the sparse sampling data. Recently, the algorithm based on DL (dictionary learning) was developed to deal with the sparse CT reconstruction problem. However, the existing DL algorithm focuses on the minimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2014