Mechanisms for positional signalling by morphogen transport: a theoretical study.
نویسندگان
چکیده
Gradients of cellular activities are ubiquitous in embryonic development. It is widely believed that the inhomogeneous spatial distribution of a morphogen would be able to set up such gradients. But how then does the morphogen propagate in the first place? Straightforward molecular diffusion is often proposed as a possible mechanism. We first show that, surprisingly, the mere binding of the diffusing morphogen to its membrane receptors suffices to prevent the establishment of a concentration-based positional signalling system. Instead, a flat, saturated distribution of receptor-bound morphogen builds up. Because the distribution spreads gradually from the morphogen source, however, cells may still know their position if they are able to integrate the morphogen signal in time. The irregularities of diffusion in the complex extracellular medium would in fact be partially compensated for by such time summation. Another, non-exclusive possibility is that morphogen transport does not occur by simple diffusion only. We put forth a novel model of receptor-aided, directed diffusion that achieves a spatial distribution of morphogen. Our model is based, as an illustration, on the properties of members of the TGFbeta family of molecules. We show that two simple hypotheses regarding the kinetics of TGBbeta binding to its receptors suffice to establish a remarkable transfer mechanism whereby a morphogen such as activin could be both propagated along cell membranes, and transferred between cells that are in contact. The model predicts that morphogen propagation properties depend strongly on the closeness of cell-cell appositions, does not necessitate protein synthesis, accumulation or slow degradation (in contrast to the diffusion/time integration model), and that the morphogen is localised mostly on or close to cell membranes.
منابع مشابه
Steady-state invariant genetics: probing the role of morphogen gradient dynamics in developmental patterning.
Morphogen-mediated patterning is the predominant mechanism by which positional information is established during animal development. In the classical view, the interpretation of positional signals depends on the equilibrium distribution of a morphogen, regardless of the dynamics of gradient formation. The problem of whether or not morphogen dynamics contribute to developmental patterning has no...
متن کاملDynamic Assignment and Maintenance of Positional Identity in the Ventral Neural Tube by the Morphogen Sonic Hedgehog
Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh), which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional id...
متن کاملA Prickly Subject: Apoptotic Regulation by Hedgehog Morphogens
Morphogens, as intercellular signalling proteins, provide a non-cell-autonomous mechanism to impart positional information to cells and govern essential cellular processes such as apoptosis. Individual morphogen pathways utilise diverse strategies to regulate the assembly and activity of the pro-apoptotic multi-protein complexes – namely the apoptosome and the death-inducing signalling complex ...
متن کاملMorphogen transport: theoretical and experimental controversies.
UNLABELLED According to morphogen gradient theory, extracellular ligands produced from a localized source convey positional information to receiving cells by signaling in a concentration-dependent manner. How do morphogens create concentration gradients to establish positional information in developing tissues? Surprisingly, the answer to this central question remains largely unknown. During de...
متن کاملRobustness of positional specification by the Hedgehog morphogen gradient.
Spatial gradients of Hedgehog signalling play a central role in many patterning events during animal development, regulating cell fate determination and tissue growth in a variety of tissues and developmental stages. Experimental evidence suggests that many of the proteins responsible for regulating Hedgehog signalling and transport are themselves targets of Hedgehog signalling, leading to mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 191 1 شماره
صفحات -
تاریخ انتشار 1998