Regularity of Minimizers of Semilinear Elliptic Problems up to Dimension Four
نویسنده
چکیده
Abstract. We consider the class of semi-stable solutions to semilinear equations −∆u = f(u) in a bounded smooth domain Ω of R (with Ω convex in some results). This class includes all local minimizers, minimal, and extremal solutions. In dimensions n ≤ 4, we establish an priori L∞ bound which holds for every semi-stable solution and every nonlinearity f . This estimate leads to the boundedness of all extremal solutions when n = 4 and Ω is convex. This result was previously known only in dimensions n ≤ 3 by a result of G. Nedev. In dimensions 5 ≤ n ≤ 9 the boundedness of all extremal solutions remains an open question. It is only known to hold in the radial case Ω = BR by a result of A. Capella and the author.
منابع مشابه
Regularity of minimizers for three elliptic problems: minimal cones, harmonic maps, and semilinear equations
We discuss regularity issues for minimizers of three nonlinear elliptic problems. They concern minimal cones, minimizing harmonic maps into a hemisphere, and radial local minimizers of semilinear elliptic equations. We describe the strong analogies among the three regularity theories. They all use a method originated in a paper of J. Simons on the area minimizing properties of cones.
متن کاملNonexistence of Nonconstant Global Minimizers with Limit at ∞ of Semilinear Elliptic Equations in All of Rn
We prove nonexistence of nonconstant global minimizers with limit at infinity of the semilinear elliptic equation −∆u = f(u) in the whole R , where f ∈ C(R) is a general nonlinearity and N ≥ 1 is any dimension. As a corollary of this result, we establish nonexistence of nonconstant bounded radial global minimizers of the previous equation.
متن کاملOptimal interior and boundary regularity for almost minimizers to elliptic variational integrals
We give a new proof of the small excess regularity theorems for integer multiplicity recti able currents of arbitrary dimension and codimension minimizing an elliptic parametric variational integral. This proof does not use indirect blow-up arguments, it covers interior and boundary regularity, it applies to almost minimizing currents, and it gives an explicit and often optimal modulus of conti...
متن کاملStable solutions to some elliptic problems: minimal cones, the Allen-Cahn equation, and blow-up solutions
We will present several results on the classification of stable solutions to some nonlinear elliptic equations. These results are a crucial step within the regularity theory of minimizers to such problems. We will mainly center our attention to three different (but connected) equations. Some techniques and ideas in the three settings are quite similar. The first one is the celebrated result of ...
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009