Glutamate transporters in glial plasma membranes: Highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry
نویسندگان
چکیده
The glutamate transporters GLT-1 and GLAST were studied by immunogold labeling on ultrathin sections of rat brain tissue embedded in acrylic resins at low temperature after freeze substitution. Both proteins were selective markers of astrocytic plasma membranes. GLT-1 was much higher in hippocampal astrocytes than in cerebellar astrocytes. Astroglial membrane GLAST densities ranked as follows: Bergmann > cerebellar granular layer approximately hippocampus > cerebellar white matter. No astrocyte appeared unlabeled. Astrocytic membranes facing capillaries, pia, or stem dendrites were lower in glutamate transporters than those facing nerve terminals, axons, and spines. Parallel fiber boutons (glutamatergic) synapsin on interneuron dendritic shafts were surrounded by lower transporter densities than those synapsing on Purkinje cell spines. Our findings suggest the localizations of glutamate transporters are carefully regulated.
منابع مشابه
Differential Expression of Two Glial Glutamate Transporters in the Rat Brain: Quantitative and lmmunocytochemical Observations
Glutamate, the major excitatory neurotransmitter in brain, is almost exclusively intracellular due to the action of the glutamate transporters in the plasma membranes. To study the localization and properties of these proteins, we have raised antibodies specifically recognizing parts of the sequences of two cloned rat glutamate transporters, GLT-1 (Pines et al., 1992) and GLAST (Storck et al., ...
متن کاملA Study on Transdifferentiation of Bone Marrow Stromal Cells into Neuronal and Glial-Like Cells In Vitro by Different Inducers
Introduction: There are some evidences to suggest that bone marrow stromal cells (BMSCs) not only differentiate into mesodermal cells, but also adopt the fate of endodermal and ectodermal cell types. BMSCs can be a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system. Bone marrow stromal cells can be expanded rapidly in vitro and can...
متن کاملSynaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum.
The cellular and subcellular distribution of the GluR1 subunit of the AMPA-type excitatory amino acid receptor was determined in the cerebellar cortex of rat using immunocytochemistry. Two polyclonal antibodies were raised against the N- and C-terminal regions of the subunit. They both labeled a band in immunoblots of rat cerebellar membranes with a molecular weight corresponding to that predic...
متن کاملThe number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain.
The role of transporters in shaping the glutamate concentration in the extracellular space after synaptic release is controversial because of their slow cycling and because diffusion alone gives a rapid removal. The transporter densities have been measured electrophysiologically, but these data are from immature brains and do not give precise information on the concentrations of the individual ...
متن کاملCharacterization of the tritium-labeled analog of L-threo-beta-benzyloxyaspartate binding to glutamate transporters.
L-Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Termination of glutamate receptor activation and maintenance of low extracellular glutamate concentrations are primarily achieved by glutamate transporters (excitatory amino acid transporters 1-5, EAATs1-5) located on both the nerve endings and the surrounding glial cells. To identify the physiological...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 15 شماره
صفحات -
تاریخ انتشار 1995