Information transfer rate of nonspiking afferent neurons in the crab.

نویسنده

  • Ralph A DiCaprio
چکیده

The thoracic-coxal muscle receptor organ (TCMRO) is the only proprioceptor at the thoracic-coxal joint in the crab leg. The S and T afferent neurons of the TCMRO convey signals to the CNS solely by means of graded changes in membrane potential. The rate of information transfer of these afferents was determined by measuring the signal-to-noise ratio (SNuR) of these cells after repeated stimulation of the receptor with identical sequences of random movement and applying the Shannon formula for the information capacity of a Gaussian channel. Intracellular recordings were made from the S and T afferents adjacent to the transduction site at the origin of the receptor and along the axon 5-7 mm distal to this site. These nonspiking afferents transduce receptor movement and transmit this information with extremely high fidelity. The SNR of both neurons near the transduction site was >1000 over most of the 200 Hz stimulation bandwidth, and the mean information transfer rate was approximately 2,500 bits/s. When calculated over a wider bandwidth of 500 Hz, the information rate was >4,600 bits/s. The effect of axonal cable properties on the information rate was evaluated by determining the SNR from membrane potential recordings made 5-7 mm distal to the transduction region. The major effect of graded transmission along the axon was attenuation and low-pass filtering of the sensory signal. The consequent reduction in signal power and bandwidth decreased the information transfer by approximately 10-15% over 200 Hz and approximately 30% over a 500 Hz bandwidth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonspiking and spiking proprioceptors in the crab: white noise analysis of spiking CB-chordotonal organ afferents.

The proprioceptors that signal the position and movement of the first two joints of crustacean legs provide an excellent system for comparison of spiking and nonspiking (graded) information transfer and processing in a simple motor system. The position, velocity, and acceleration of the first two joints of the crab leg are monitored by both nonspiking and spiking proprioceptors. The nonspiking ...

متن کامل

Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg.

Local reflexes of a leg of the locust Schistocerca gregaria (Forskal) can be elicited by selective stimulation of a proprioceptor (the femoral chordotonal organ) at the femorotibial joint. Motor neurons are either excited or inhibited, so that a coordinated reflex response of a leg results. At the same time, some nonspiking local interneurons are either excited or inhibited by the inputs from t...

متن کامل

The firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat

Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal ‎horn is well described, the midbrain neural basis underlying each phase of behavior in ‎formalin test has not been clarified. The present study was designed to investigate the nucleus ‎cuneiformis (CnF)‎‏ ‏neuronal responses during two phases after subcutaneous injection of ‎formalin into the hind paw...

متن کامل

Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons.

The gain of local reflexes of one leg of a locust can be altered by mechanosensory inputs generated by movements of or tactile inputs to an adjacent leg. Touching the mesothoracic tarsus, for example, increases the number of spikes that are produced by the metathoracic slow extensor tibiae motor neuron and enhances the depolarization of flexor tibiae motor neuron in response to imposed movement...

متن کامل

Receptor potentials and electrical properties of nonspiking stretch-receptive neurons in the sand crab Emerita analoga (Anomura, Hippidae).

Receptor potentials and electrical properties of nonspiking stretch-receptive neurons in the sand crab Emerita analoga (Anomura, Hippidae). Four nonspiking, monopolar neurons with central somata and large peripheral dendrites constitute the sole innervation of the telson-uropod elastic strand stretch receptor in Emerita analoga. We characterized their responses to stretch and current injection,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2004