Similarity Estimation Using Bayes Ensembles

نویسندگان

  • Tobias Emrich
  • Franz Graf
  • Hans-Peter Kriegel
  • Matthias Schubert
  • Marisa Thoma
چکیده

Similarity search and data mining often rely on distance or similarity functions in order to provide meaningful results and semantically meaningful patterns. However, standard distance measures like Lp-norms are often not capable to accurately mirror the expected similarity between two objects. To bridge the so-called semantic gap between feature representation and object similarity, the distance function has to be adjusted to the current application context or user. In this paper, we propose a new probabilistic framework for estimating a similarity value based on a Bayesian setting. In our framework, distance comparisons are modeled based on distribution functions on the difference vectors. To combine these functions, a similarity score is computed by an Ensemble of weak Bayesian learners for each dimension in the feature space. To find independent dimensions of maximum meaning, we apply a space transformation based on eigenvalue decomposition. In our experiments, we demonstrate that our new method shows promising results compared to related Mahalanobis learners on several test data sets w.r.t. nearestneighbor classification and precision-recall-graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BAYES ESTIMATION USING A LINEX LOSS FUNCTION

This paper considers estimation of normal mean ? when the variance is unknown, using the LINEX loss function. The unique Bayes estimate of ? is obtained when the precision parameter has an Inverse Gaussian prior density

متن کامل

Bayes Error Rate Estimation Using Neural Network Ensembles

Assessing the performance of a given pattern classiier requires knowing the lowest achievable error, or the Bayes error rate. There are several classical approaches for estimating or nding bounds for the Bayes error. One type of approach focuses on obtaining analytical bounds, which are both diicult to calculate and dependent on distribution parameters that may not be known. Another strategy is...

متن کامل

Bayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution

This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...

متن کامل

Convex Point Estimation using Undirected Bayesian Transfer Hierarchies

When related learning tasks are naturally arranged in a hierarchy, an appealing approach for coping with scarcity of instances is that of transfer learning using a hierarchical Bayes framework. As fully Bayesian computations can be difficult and computationally demanding, it is often desirable to use posterior point estimates that facilitate (relatively) efficient prediction. However, the hiera...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010